RS AGGARWAL CLASS 9 Chapter 1 Number System Exercise 1G

 Exercise 1G

PAGE NO- 53

Question 1:

Simplify
(i)

(ii)

(iii)

(iv)

Answer 1:

(i)


(ii)


(iii)


(iv)

Question 2:

Simplify:
(i)
(ii)
(iii)

Answer 2:

Question 3:

Simplify:
(i)
(ii)
(iii)

Answer 3:

Question 4:

Simplify:
(i) (34)1/4
(ii) (31/3)4
(iii)

Answer 4:

Question 5:

Evaluate
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Answer 5:




Question 6:

If a = 2, b = 3, find the values of

(i) (ab + ba)–1

(ii) (aa + bb)–1

Answer 6:

(i) (ab + ba)–1




(ii) (aa + bb)–1

Question 7:

Simplify

(i) 8149-32

(ii) (14641)0.25

(iii) 32243-45

(iv) 7776243-35

Answer 7:

(i) 8149-32
8149-32=972-32                =97-3                =793                =343729

(ii) (14641)0.25
146410.25=1464125100                    =1464114                    =11414                    =11

(iii) 32243-45
32243-45=2433245                  =32545                  =324                  =8116

(iv) 7776243-35
7776243-35=243777635                    =36535                    =123                    =18

PAGE NO -54

Question 8:

Evaluate
(i) 4(216)23+1(256)34+2(243)15

(ii) (64125)23+(256625)14+(37)0

(iii) (8116)34 [(259)32÷(52)3]

(iv) (25)52×(729)13(125)23×(27)23×843

Answer 8:

(i) 4(216)23+1(256)34+2(243)15
4(216)23+1(256)34+2(243)15=4[(6)3]23+1[(4)4]34+2[(3)5]15=4(6)2+1(4)3+2(3)1=4(6)2+(4)3+2(3)=144+64+6=214


(ii) (64125)23+(256625)14+(37)0
(64125)23+(256625)14+(37)0=[(45)3]23+[(45)4]14+1=(45)2+(45)1+1=(54)2+(54)+1=2516+54+1=25+20+1616=6116


(iii) (8116)34 [(259)32÷(52)3]
(8116)34 [(259)32÷(52)3]=(1681)34[(925)32÷(25)3]=[(23)4]34{[(35)2]32÷(8125)}=(23)3[(35)3÷(8125)]=827×271258125=1

(iv) (25)52×(729)13(125)23×(27)23×843
(25)52×(729)13(125)23×(27)23×843=[(5)2]52×[(9)3]13[(5)3]23×[(3)3]23×[(2)3]43=(5)5×(9)1(5)2×(3)2×(2)4=5×5×5×5×5×95×5×3×3×2×2×2×2=12516

Question 9:

Evaluate
(i)

(ii)

(iii)

(iv)

Answer 9:

(i)


(ii)


(iii)


(iv)

Question 10:

Prove that
(i)

(ii)

(iii)

Answer 10:

(i)


(ii)


(iii)

Question 11:

Simplify and express the result in the exponential form of x.

Answer 11:



Hence, the result in the exponential form is .

Question 12:

Simplify the product 23·24·3212.

Answer 12:

23·24·3212=213.214.32112                           =213.214.25112                           =213.214.2512                           =213+14+512                           =24+3+512                           =21212                           =21                           =2

Question 13:

Simplify
(i) 1513914-6

(ii) 1215271552

(iii) 1514312-2

Answer 13:

(i) 1513914-6
1513914-6=91415136                 =9641563                 =932152                 =3232152                 =33152                 =27225                 =325

(ii) 1215271552
1215271552=121552271552                =12122712                =122712                =4912                =23212                =23

(iii) 1514312-2
1514312-2=31215142                =3221524                =31512                =3312.512                =31-12512                =312512                =35

Question 14:

Find the value of x in each of the following.

(i) 5x+25=2

(ii) 3x-23=4

(iii) 343 43-7=342x

(iv) 5x-3×32x-8=225

(v) 33x·32x3x=3204

Answer 14:

i 5x+25=25x+215=25x+2155=255x+2=325x=32-25x=30x=305x=6
Hence, the value of x is 6.

ii 3x-23=43x-213=43x-2133=433x-2=643x=64+23x=66x=663x=22
Hence, the value of x is 22.

iii 343 43-7=342x343 347=342x343+7=342x3410=342x10=2x102=x5=x
Hence, the value of x is 5.

iv 5x-3×32x-8=2255x-3×32x-8=1525x-3×32x-8=52×32x-3=2 and 2x-8=2x=2+3 and 2x=2+8x=5 and 2x=10x=5 and x=102x=5 and x=5x=5
Hence, the value of x is 5.

v 33x·32x3x=320433x+2x3x=3201435x3x=3535x-x=3534x=354x=5x=54
Hence, the value of x is 54.

PAGE NO-55

Question 15:

Prove that

(i) x-1y·y-1z·z-1x=1.

(ii) x1a-b1a-c·x1b-c1b-a·x1c-a1c-b=1

(iii) xab-cxba-c÷xbxac=1

(iv) xa+b2 xb+c2 xc+a2xaxbxc4=1

Answer 15:

(i) x-1y·y-1z·z-1x=1
LHS=x-1y·y-1z·z-1x        =x-1y12·y-1z12·z-1x12        =x-12y12·y-12z12·z-12x12        =x-12+12y12-12z12-12        =x0y0z0        =1        =RHS

Hence, x-1y·y-1z·z-1x=1.

(ii) x1a-b1a-c·x1b-c1b-a·x1c-a1c-b=1
LHS=x1a-b1a-c·x1b-c1b-a·x1c-a1c-b        =x1a-b1a-c·x-1c-b1b-a·x1c-a1c-b        =x1a-b1a-c·x-1b-a1c-b·x1c-a1c-b        =x1a-b1a-c·x-1b-a.x1c-a1c-b        =x1a-b1a-c·x1c-a-1b-a1c-b        =x1a-b1a-c·xb-a-c+ac-ab-a1c-b        =x1a-b1a-c·xb-cc-ab-a-1b-c        =x1a-ba-c·x-1c-ab-a        =x1b-ac-a·x-1c-ab-a        =x1b-ac-a-1c-ab-a        =x0        =1        =RHS

Hence, x1a-b1a-c·x1b-c1b-a·x1c-a1c-b=1.

(iii) xab-cxba-c÷xbxac=1
LHS=xab-cxba-c÷xbxac        =xab-cxba-c×xaxbc        =xab-cxba-c×xacxbc        =xab-acxba-bc×xacxbc        =xab-ac-ba+bc.xac-bc        =x-ac+bc.xac-bc        =x-ac+bc+ac-bc        =x0        =1        =RHS

Hence, xab-cxba-c÷xbxac=1.

(iv) xa+b2 xb+c2 xc+a2xaxbxc4=1
LHS=xa+b2 xb+c2 xc+a2xaxbxc4        =x2a+2b x2b+2c x2c+2ax4ax4bx4c        =x2a+2b+2b+2c+2c+2ax4a+4b+4c        =x4a+4b+4cx4a+4b+4c        =1        =RHS
Hence, xa+b2 xb+c2 xc+a2xaxbxc4=1.

Question 16:

If x is a positive real number and exponents are rational numbers, simplify

xbxcb+c-a·xcxac+a-b·xaxba+b-c

Answer 16:

xbxcb+c-a·xcxac+a-b·xaxba+b-c=xb-cb+c-a·xc-ac+a-b·xa-ba+b-c=xb-cb.xb-cc-a·xc-ac+a-b·xa-bb-c.xa-ba=xb-cb.xb-cc-a·xc+a-bc-a·xa-bb-c.xa-ba=xb-cb.xb-cc-a·xc+a-bc-a·xa-bb-c.xa-ba=xb-cb.xb-c+c+a-bc-a·xa-bb-c.xa-ba=xb-cb.xac-a·xa-bb-c.xa-ba=xbb-c.xac-a·xa-bb-c.xa-ba=xbb-c·xa-bb-c.xac-a.xa-ba=xb+a-bb-c.xac-a.xa-ba=xab-c.xac-a.xa-ba=xb-ca.xc-aa.xa-ba=xb-c+c-a+a-ba=x0=1

Question 17:

If 9n×32×3-n2-2-27n33m×23=127, prove that m – n = 1.

Answer 17:

9n×32×(3-n2)-2-(27)n33m×23=127(32)n×32×(3-n)-1-(33)n33m×23=13332n×32×3n-33n33m×23=13332n+2+n-33n33m×23=13333n+2-33n33m×23=13333n×32-33n33m×23=13333n(9-1)33m×8=13333n(8)33m×8=13333n33m=13333n-3m=3-33n-3m=-33(n-m)=-3n-m=-1m-n=1
Hence, m – n = 1.

Question 18:

Write the following in ascending order of magnitude.

66, 73, 84.

Answer 18:

66, 73, 8466=616=6212=62112=36112   ...173=713=7412=74112=2401112  ...284=814=8312=83112=512112  ...3On Comparing 1, 2 and 3, we get36112<512112<240111266<84<73Hence, 66<84<73.

No comments:

Post a Comment

Contact form

Name

Email *

Message *