Exercise 1G
Question 1:
Simplify
(i)
(ii)
(iii)
(iv)
Answer 1:
(i)
(ii)
(iii)
(iv)
Question 2:
Simplify:
(i)
(ii)
(iii)
Answer 2:
Question 3:
Simplify:
(i)
(ii)
(iii)
Answer 3:
Question 4:
Simplify:
(i) (34)1/4
(ii) (31/3)4
(iii)
Answer 4:
Question 5:
Evaluate
(i)
(ii)
(iii)
(iv)
(v)
(vi)
Answer 5:
Question 6:
If a = 2, b = 3, find the values of
(i) (ab + ba)–1
(ii) (aa + bb)–1
Answer 6:
(i) (ab + ba)–1
(ii) (aa + bb)–1
Question 7:
Simplify
(i)
(ii) (14641)0.25
(iii)
(iv)
Answer 7:
(i)
(ii) (14641)0.25
(iii)
(iv)
Question 8:
Evaluate
(i) 4(216)−23+1(256)−34+2(243)−15
(ii) (64125)−23+(256625)−14+(37)0
(iii) (8116)−34 [(259)−32÷(52)−3]
(iv) (25)52×(729)13(125)23×(27)23×843
Answer 8:
(i) 4(216)−23+1(256)−34+2(243)−15
4(216)−23+1(256)−34+2(243)−15=4[(6)3]−23+1[(4)4]−34+2[(3)5]−15=4(6)−2+1(4)−3+2(3)−1=4(6)2+(4)3+2(3)=144+64+6=214
(ii) (64125)−23+(256625)−14+(37)0
(64125)−23+(256625)−14+(37)0=[(45)3]−23+[(45)4]−14+1=(45)−2+(45)−1+1=(54)2+(54)+1=2516+54+1=25+20+1616=6116
(iii) (8116)−34 [(259)−32÷(52)−3]
(8116)−34 [(259)−32÷(52)−3]=(1681)34[(925)32÷(25)3]=[(23)4]34{[(35)2]32÷(8125)}=(23)3[(35)3÷(8125)]=827×271258125=1
(iv) (25)52×(729)13(125)23×(27)23×843
(25)52×(729)13(125)23×(27)23×843=[(5)2]52×[(9)3]13[(5)3]23×[(3)3]23×[(2)3]43=(5)5×(9)1(5)2×(3)2×(2)4=5×5×5×5×5×95×5×3×3×2×2×2×2=12516
Question 9:
Evaluate
(i)
(ii)
(iii)
(iv)
Answer 9:
(i)
(ii)
(iii)
(iv)
Question 10:
Prove that
(i)
(ii)
(iii)
Answer 10:
(i)
(ii)
(iii)
Question 11:
Simplify and express the result in the exponential form of x.
Answer 11:
Hence, the result in the exponential form is .
Question 12:
Simplify the product .
Answer 12:
Question 13:
Simplify
(i)
(ii)
(iii)
Answer 13:
(i)
(ii)
(iii)
Question 14:
Find the value of x in each of the following.
(i)
(ii)
(iii)
(iv)
(v)
Answer 14:
Hence, the value of x is 6.
Hence, the value of x is 22.
Hence, the value of x is 5.
Hence, the value of x is 5.
Hence, the value of x is .
Question 15:
Prove that
(i) .
(ii)
(iii)
(iv)
Answer 15:
(i)
Hence, .
(ii)
Hence, .
(iii)
Hence, .
(iv)
Hence, .
Question 16:
If x is a positive real number and exponents are rational numbers, simplify
Answer 16:
Question 17:
If , prove that m – n = 1.
Answer 17:
9n×32×(3-n2)-2-(27)n33m×23=127⇒(32)n×32×(3-n)-1-(33)n33m×23=133⇒32n×32×3n-33n33m×23=133⇒32n+2+n-33n33m×23=133⇒33n+2-33n33m×23=133⇒33n×32-33n33m×23=133⇒33n(9-1)33m×8=133⇒33n(8)33m×8=133⇒33n33m=133⇒33n-3m=3-3⇒3n-3m=-3⇒3(n-m)=-3⇒n-m=-1⇒m-n=1
Hence, m – n = 1.
Question 18:
Write the following in ascending order of magnitude.
.
No comments:
Post a Comment