SELINA Solution Class 9 Chapter 1 Rational and Irrational Numbers Exercise 1C

Question 1.1

State, with reason, of the following is surd or not : √180

Sol:

√180 = 2×2×5×3×3 = 6√5 which is irrational.
∴ √180 is a surds.

Question 1.2

State, with reason, of the following is surd or not :
274

Sol:

274=3×3×34 which is irrational.

244 is a surds.

Question 1.3

State, with reason, of the following is surd or not : 
1285

Sol:

1285=2×2×2×2×2×2×25=245

1285 is a surds. 

Question 1.4

State, with reason, of the following is surd or not : 
643

Sol:

643=2×2×2×2×2×23=4 which is rational.

643 is not a surds.

Question 1.5

State, with reason, of the following is surd or not : 
253.403

Sol:

253.403=5×5×2×2×2×53=2×5=10

253.403 is not a surds.

Question 1.6

State, with reason, of the following is surd or not : 
-1253

Sol:

-1253=-5×-5×-53=-5

-1253 is not a surds. 

Question 1.7

State, with reason, of the following is surd or not : √π

Sol:
We observe that π​ is an irrational number but π is not a rational number.

∴π​ is a surd.

Question 1.8

State, with reason, of the following is surd or not : 
3+2

Sol:

3+2 is not a surds because 3 + √2 is irrational.

Question 2.1

Write the lowest rationalising factor of : 5√2

Sol:

5√2 x 5√2 = 5 x 2 = 10 which is rational.

∴ lowest rationalizing factor is √2 

Question 2.2

Write the lowest rationalising factor of : √24

Sol:

√24 = 2×2×2×3=26

∴ lowest rationalizing factor is √6.

Question 2.3

Write the lowest rationalising factor of : √5 - 3

Sol:

( √5 - 3 )( √5 + 3 ) = ( √5 )2 - (3)2 = 5 - 9 = -4

∴ lowest rationalizing factor is ( √5 + 3 )

Question 2.4

Write the lowest rationalising factor of : 7 - √7

Sol:

7 - √7
( 7 - √7 )( 7 + √7 ) = 49 - 7 = 42  
Therefore, lowest rationalizing factor is ( 7 + √7 ).

Question 2.5

Write the lowest rationalising factor of : √18 - √50

Sol:

√18 - √50
√18 - √50 = 2×3×3-5×5×2
                 = 3√2 - 5√2 = -2√2
∴ lowest rationalizing factor is √2

Question 2.6

Rationalise the denominators of : 3+13-1

Sol:

= 3+13-1×3+13+1

= (3+1)2(3)2-(1)2

= 3+1+233-1

= 4+232

= 2(2+3)2

= 2 + √3

Question 2.7

Write the lowest rationalising factor of : √13 + 3

Sol:

( √13 + 3 )( √13 - 3 ) = ( √13 )2 - 32 = 13 - 9 = 4

Its lowest rationalizing factor is √13 - 3.

Question 2.8

Write the lowest rationalising factor of : 15 - 3√2

Sol:

15 - 3√2
15 - 3√2 = 3( 5 - √2 )
               = 3( 5 - √2 )( 5 + √2 )
               = 3 x [52-(2)2]
               = 3 x [ 25 - 2 ]
               = 3 x 23
               = 69
Its lowest rationalizing factor is 5 + √2.

Question 2.9

Write the lowest rationalising factor of : 3√2 + 2√3

Sol:

3√2 + 2√3
= ( 3√2 + 2√3 )( 3√2 - 2√3 )
= ( 3√2)2 - (2√3)2
= 9 x 2 - 4 x 3
= 18 - 12
= 6
its lowest rationalizing factor is 3√2 - 2√3.

Question 3.1

Rationalise the denominators of : 35

Sol:

35×55=355

Question 3.2

Rationalise the denominators of : 235

Sol:

235×55=2215

Question 3.3

Rationalise the denominators of : 13-2

Sol:

13-2×(3+23+2)=3+2(3)2-(2)2=3+23-2

= 3+2

Question 3.4

Rationalise the denominators of : 35+2

Sol:

35+2×(5-25-2)

= 3(5-2)(5)2-(2)2

= 3(5-2)5-2

= 5-2

Question 3.5

Rationalise the denominators of : 2-32+3

Sol:

2-32+3×2-32-3

= (2-3)2(2)2-(3)2=4+3-434-3

= 7-431 
= 7 -  4√3

Question 3.6

Rationalise the denominators of : 3+13-1

Sol:

3+13-1×3+13+1 

= (3+1)2(3)3-(1)2

= 3+1+233-1

= 4+232

= 2(2+3)2

= 2 + √3

Question 3.7

Rationalise the denominators of : 3-23+2

Sol:

3-23+2×3-23-2

= (3-2)2(3)2-(2)2

= 3+2-263-2

= 5 - 2√6

Question 3.8

Rationalise the denominators of : 6-56+5

Sol:

6-56+5×6-56-5

= 6+5-230(6)2-(5)2

= 11-2306-5

= 11 - 2√30

Question 3.9

Rationalise the denominators of : 25+3225-32

Sol:

25+3225-32×25+3225+32

= (25+32)2(25)2-(32)2

= 4×5+9×2+121020-18

= 20+18+12102

= 38+12102

= 2(19+610)2

= 19 + 6√10

Question 4.1

Find the values of 'a' and 'b' in each of the following : 
2+32-3=a+b3

Sol:

2+32-3×2+32+3=a+b3

= (2+3)2(2)2-(3)2=a+b3

= 4+3+434-3=a+b3

7 + 4√3 = a + b√3

a = 7, b = 4

Question 4.2

Find the values of 'a' and 'b' in each of the following:
7-27+2=a7+b 

Sol:

7-27+2=a7+b 

(7-2)2(7)2-(2)2=a7+b

7+4-477-4=a7+b

11-473=a7+b

a=-43,b=113

Question 4.3

Find the values of 'a' and 'b' in each of the following: 
33-2=a3-b2

Sol:

33-2=a3-b2

33-2×3+23+2=a3-b2

3(3+2)3-2=a3-b2

(33+32)=a3-b2

⇒ a = 3, b = -3 

Question 4.4

Find the values of 'a' and 'b' in each of the following:
5+325-32=a+b2

Sol:

5+325-32=a+b2

5+325-32×5+325+32=a+b2

(5+32)2(5)2-(32)2=a+b2

25+18+30225-18=a+b2

43+3027=a+b2

a=437, b=307

Question 5.1

Simplify :
2223+1+1723-1

Sol:

2223+1+1723-1

= 22(23-1)+17(23+1)(23+1)(23-1)

= 443-22+343+17(23)2-1

=783-512-1

= 783-511

Question 5.2

Simplify :
26-2-36+2

Sol:

26-2-36+2

= 26-2-36+2=2(6+2)-3(6-2)(6)2-(2)2

= 12+2-18+66-2

= 23+2-32+64

Question 6.1

If x =5-25+2 and y = 5+25-2; find :
x2

Sol:

x= [5-25+2]2=5+4-455+4+45=9-459+45

= 9-459+45×[9-459-45]=(9-45)2(9)2-(45)2 

= 81+80-72581-80=161-725

Question 6.2

If x =5-25+2 and y = 5+25-2; find : y2

Sol:

 y= [5+25-2]2=5+4+455+4-45 =9+459-45

= 9+459-45×9+459+45=(9+45)2(9)2-(45)2=81+80+72581-80

= 161+725

Question 6.4

If x =5-25+2 and y = 5+25-2; find :  xy

Sol:

xy = (5-2)(5+2)(5+2)(5-2)=1

Question 6.4

If x =5-25+2 and y = 5+25-2; find :
x2 + y2 + xy.

Sol:

x2 + y2 + xy 
= 161 - 72√5 + 161 +72√5 + 1

= 322 + 1 = 323

Question 7.1

If m = 13-22andn=13+22, find m2

Sol:

m = 13-22

m = 13-22×3+223+22

m = 3+22(3)2-(22)2

m = 3+229-8

m = 3 +2√2

⇒ m2 = ( 3 + 2√2)2

           = (3)2 + 2 x 3 x 2√2 + (2√2)2

           = 9 + 12√2  + 8

           = 17 + 12√2

Question 7.2

If m = 13-22andn=13+22, find mn

Sol:

mn = ( 3 + 2√2 )( 3 - 2√2 ) = (3)2 - (2√2)2 = 9 - 8 = 1

Question 7.3

If m = 13-22andn=13+22, find n2

Sol:

n = 13+22

n = 13+22×3-223-22

n = 3-22(3)2-(22)2

n = 3+229-8

n = 3 - 2√2

⇒ n2  = ( 3 - 2√2)2

           = (3)2 - 2 x 3 x 2√2 + (2√2)2

           = 9 - 12√2  + 8

           = 17 - 12√2

Question 8.1

If x = 2√3 + 2√2 , find : 1x

Sol:

1x=123+22×23-223-22

= 23-2212-8

= 2(3-2)42

= 3-22

Question 8.2

If x = 2√3 + 2√2 , find : (x+1x)

Sol:

x+1x=23+22+3-22

= 2(3+2)+3-22

= 4(3+2)+(3-2)2

= 43+42+3-22

= 53+322

Question 8.3

If x = 2√3 + 2√2 , find : (x+1x)2

Sol:

(x+1x)2=[53+322]2

= 75+18+3064

= 93+3064

Question 9

If x = 1 - √2, find the value of (x-1x)3

Sol:

Given that x = 1 - √2
We need to find the value of (x-1x)3

Since x = 1 - √2, we have 
1x=11-2×1+21+2

1x=1+2(1)2-(2)2      [ Since ( a - b )( a + b ) = a2 - b2 ]

1x=1+21-2

1x=1+2-1

1x=-(1+2)              .....(1)

Thus, (x-1x)=(1-2)-(-(1+2))

(x-1x)=1-2+1+2

(x-1x)=2

(x-1x)3=23

(x-1x)3=8

Question 10

If x = 5 - 2√6, find x2+1x2

Sol:

Given x = 5 - 2√6

We need to find x2+1x2

Since x = 5 - 2√6 , we have

1x=15-26

1x=15-26×5+265+26

1x=5-26(5-26)(5+26)

1x=5+2652-(26)2

1x=5+2625-24

1x=5+261

1x=(5+26)                          .....(1)

Thus, (x-1x) = ( 5 - 2√6 ) - ( 5 + 2√6)

(x-1x) = 5 - 2√6 - 5 - 2√6

(x-1x) = - 4√6                       ....(2)

Now consider (x-1x)2 :

Thus
(x-1x)=x2+1x2-2x×1x    [ since ( a - b )2 = a2 - 2ab + b2 ]

(x-1x)2=x2+1x2-2

(x-1x)2+2=x2+1x2     .....(3)

Thus, from equations (2) and (3), we have

(x2)+(1x2)=(-46)2+2

(x2)+(1x2)=96+2

(x2)+(1x2)=98

Question 11

Show that :
13-22-122-7+17-6-16-5+15-2=5

Sol:

L.H.S = 13-22-122-7+17-6-16-5+15-2
= 13-8-18-7+17-6-16-5+15-2

= 13-8×3+83+8-18-7×8+78+7+17-6×7+67+6-16-5×6+56+5+15-2×5+25+2

= 3+8(3)2-(8)2 -8+7(8)2-(7)2+7+6(7)2-(6)2-6-5(6)2-(5)2+5-2(5)2-(2)2

= 3+89-8 -8+78-7 +7+67-6-6-56-5+5-25-4

= 3 + √8 - √8 - √7 + √7 + √6 - √6 - √5 + √5 + 2

= 3 + 2

= 5

= R.H.S.

Question 12

Rationalise the denominator of : 13-2+1

Sol:

13-2+1

= 1(3-2)+1×(3-2)-1(3-2)-1

= 3-2-1(3-2)2-(1)2

= 3-2-1(3)2-26+(2)2-1

= 3-2-13-26+2-1

= 3-2-14-26

= (3-2)-12(2-6)

= 3-2-12(2-6)×2+62+6

= 23-22-2+18-12-62[(2)2-(6)2]

= 23-22-2+32-23-62[4-6]

= 2-2-62(-2)

= 2-2-6-4

= 14(2+6-2)

Question 13.1

If √2 = 1.4 and √3 = 1.7, find the value of : 13-2

Sol:

√2 = 1.4 and √3 = 1.7

13-2

= 13-2×3+23+2

= 3+2(3)2-(2)2

= 3+23-2

= √3 + √2

= 1.7 + 1.4

= 3.1

Question 13.2

If √2 = 1.4 and √3 = 1.7, find the value of : 13+22

Sol:

√2 = 1.4 and √3 = 1.7

13+22

= 13+22×3-223-22

= 3-22(3)2-(22)2

= 3-229-8

= 3 - 2√2

= 3 - 2( 1.4 )

= 3 - 2.8

= 0.2

Question 13.3

Simplify : 2-33

Sol:

2-33

= 23-33

= 233.3-1

= 233-1

Question 14

Evaluate : 4-54+5+4+54-5

Sol:

4-54+5+4+54-5

= 4-54+5×4-54-5+4+54-5×4+54+5

= (4-5)2(4)2-(5)2+(4+5)2(4)2-(5)2

= 16+5-8516-5+16+5+8516-5

= 21-8511+21+8511

= 21-85+21+8511

= 4211=3911

Question 15

If 2+52-5=xand 2-52+5=y; find the value of x2 - y2.

Sol:

x =2+52-5                           

   =2+52-5×2+52+5      

   = (2+5)222-(5)2

   = 4+45+54-5

    = 9+45-1

    =  - ( 9 - 4√5 )

y = 2-52+5

   =2-52+5×2-52-5

   = (2-5)222-(5)2

   = 4-45+54-5

    = 9-45-1

    =  - ( 9 + 4√5 )

∴ x2 - y2 = ( - 9 - 4√5 )2 - ( - 9 + 4√5 )2

               = 81 + 72√5 + 80 - ( 81 - 72√5 + 80 )

               = 81 + 72√5 + 80 - 81 + 72√5 - 80
               = 144√5

No comments:

Post a Comment

Contact form

Name

Email *

Message *