SELINA Solution Class 9 Chapter 7 Indices (Exponents) Exercise 7A

Question 1.1

Evaluate : 
33×(243)-23×9-13

Sol:

33×(243)-23×913

= 33×(3×3×3×3×3)-23×(3×3)-13

= 33×(35)-23×(32)13

= 33×3-103×3-23   ...[(am)n=amn]

= 33-103-23      [am×an×ao=am+n+o]             
=39-10-23   

= 39-123

= 3-33

= 3-1
= 13

Question 1.2

Evaluate :
5-4×(125)53÷(25)-12

Sol:

5-4×(125)53÷(25)-12

= 5-4×(5×5×5)53÷(5×5)-12

= 5-4×(53)53÷(52)-12

= 5-4×[(5)3×53]÷[(5)2×-12]

= 5-4×555-1

= 55-45-1

= 515-1

= 51-(-1)

= 52
= 5 x 5
=25

Question 1.3

Evaluate :
(27125)23×(925)32

Sol:

(27125)23×(925)32

= (3×3×35×5×5)23×(3×35×5)-32

= [(35)3]23×[(35)2]-32

= (35)3×23×(35)2×-32

= (35)2×(35)-3

= (35)2-3

= (35)-1

= 135=53 

Question 1.4

Evaluate :
70×(25)-32-5-3

Sol:

70×(25)-32-5-3
= 70×(5×5)-32-5-3

= 70×(52)-32-153

= 70×[(5)2×(-32)]-153

= 70×5-3-153

= 1×5-3-153

= 153-153

= 1-15×5×5

= 0125

= 0

Question 1.5

Evaluate : 
(1681)-34×(499)32÷(343216)23

Sol:

(1681)-34×(499)32÷(343216)23

= (2×2×2×23×3×3×3)-34×(7×73×3)32÷(7×7×76×6×6)23

= [(23)4]-34×[(73)2]32÷[(76)3]23

= (23)4×-34×(73)2×32÷(76)3×23

= (23)-3×(73)3÷(76)2

= 1(23)3×(73)3×1(76)2

= 123×23×23×73×73×73×176×76

= 1×3×3×32×2×2×73×73×73×1×6×67×7

= 7×3×32

= 632

= 31.5

Question 2.1

Simplify :
(8x3÷125y3)23

Sol:

(8x3÷125y3)23

= (2x×2x×2x5y×5y×5y)23

= [(2x5y)3]23

= (2x5y)3×23

= (2x5y)2

= [2x5y×2x5y]

= 4x225y2

Question 2.2

Simplify :
(a+b)-1.(a-1+b-1)

Sol:

(a+b)-1.(a-1+b-1)

= 1a+b×(1a+1b)

= 1a+b×(b+aab)

= 1a+b×a+bab

= 1ab

Question 2.3

Simplify :
5n+3-6×5n+19×5n-5n×22

Sol:

5n+3-6×5n+19×5n-5n×22

= 5n+1×52-6×5n+19×5n-5n×22

= 5n+1×(52-6)5n×(9-4)

= 51×195

= 19

Question 2.4

Simplify :
(3x2)-3×(x9)23

Sol:

(3x2)-3×(x9)23

= 1(3x2)3×x9×23

= 133x2×3×x6

= 127x6×x6

= 127

Question 3.1

Evaluate :
14+(0.01)-12-(27)23

Sol:

14+(0.01)-12-(27)23

= 12×12+(0.1×0.1)-12-(3×3×3)23

= 12+[(0.1)2]-12-(32)23

= 12+(0.1)2×(-12)-3×(3×23)

= 12+(0.1)-1-32

= 12+10.1-9

= 12+101-9

= 1+20-182

= 32

= 112

Question 3.2

Evaluate :
(278)23-(14)-2+50

Evaluate :
(278)23-(14)-2+50

Sol:

(278)23-(14)-2+50

= (3×3×32×2×2)23-(1×12×2)-2+50

= [(32)3]23-[(12)2]-2+1

= (32)3×23-(12)2×(-2)+1

= (32)2-(12)-4+1

= 32×32-1(12)4+1

= 94-112×12×12×12+1

= 94-1116+1

= 94-16+1

= 9-64+44

= -514

Question 4.1

Simplify the following and express with positive index :
(3-42-8)14

Sol:

(3-42-8)14 

= (2834)14

= (28)14(34)14

= 28×1434×14

= 223

= 43

Question 4.2

Simplify the following and express with positive index :
(27-39-3)15

Sol:

(27-39-3)15

= (93273)15

= [(32)3(33)3]15

= [(3233)3]15

= [(13)3]15

= (13)3×15

= 1(3)35

Question 4.3

Simplify the following and express with positive index :
(32)-25÷(125)-25

Sol:

(32)-25÷(125)-25

= [(32)-25(125)-23]

= (125)23(32)25

= (5×5×5)23(2×2×2×2×2)25

= (53)23(25)25

= 5222

= 254

= 614

Question 4.4

Simplify the following and express with positive index :
[1-{1-(1-n)-1}-1]-1

Sol:

[1-{1-(1-n)-1}-1]-1

= 1[1-{1-(1-n)-1}-1]+1

= 11-11-(1-n)-1

= 11- 11- 11-n

= 11-11(1-n)-11-n

= 11-1-n1-n

= 11-1-n-n

= 11+1-nn

= 1n+(1-n)n

= 1n+1-nn

= n1

= n

Question 5

If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a  x 2-b x 5-c.

Sol:

2160 = 2a x 3b x 5c
⇒ 2 x 2 x 2 x 2 x 3 x 3 x 3 x 5 = 2a x 3b x 5c
⇒ 24 x 33 x 51 = 2a x 3b x 5c
⇒ 2a x 3b x 5c = 24 x 33 x 51
Comparing powers of 2, 3 and 5 on the both sides of equation, We have
a = 4; b = 3 and c = 1
Hence,
Value of 3a x 2-b x 5-c
= 34 x 2-3 x 5-1
= 3 x 3 x 3 x 3 x 123×15 

= 81×12×2×2×15

= 81×18×15

= 8140

= 2140

Question 6

If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.

Sol:

1960 = 2a x 5b x 7c
⇒ 2 x 2 x 2 x 5 x 7 x 7 = 2a x 5b x 7c
⇒ 23 x 51 x 72 = 2a x 5b x 7c
⇒  2ax 5b x 7c = 23 x 51 x 72
Comparing powers of 2,5 and 7 on the both sides of equation, We have
a = 3; b = 1 and c = 2
Hence,
Value of 2-a x 7b x 5-c

= 2-3 x 71 x 5-2

= 123×7×152

= 18×7×15×5

= 7200          

Question 7.1

Simplify :
83a×25×22a4×211a×2-2a

Sol:

83a×25×22a4×211a×2-2a

= (23)3a×25×22a22×211a×2-2a

=23×3a×25×22a22×211a×2-2a

= 29a×25×22a22×211a×2-2a

= 29a+5+2a-2-11a+2a

= 22a+3

Question 7.2

Simplify :
3×27n+1+9×33n-18×33n-5×27n

Sol:

3×27n+1+9×33n-18×33n-5×27n

= 3×(3×3×3)n+1+3×3×33n-12×2×2×33n-5×(3×3×3)n

= 3×(33)n+1+32×33n-123×33n-5×(33)n

= 3×33n+3+33n+123×(33)n-5×(33)n

= 33n+3+1+33n+123×(33)n-5×(33)n

= 33n+4+33n+123×(33)n-5×(33)n

= 33n×34+33n×3123×(33)n-5×(33)n

= 33n(34+31)(33)n(8-5)

= 33n(34+31)33n×3

= 3×3×3×3+33

= 81+33

= 843

= 28

Question 8

Show that :
(ama-n)m-n×(ana-l)n-l×(ala-m)l-m=1

Sol:

(ama-n)m-n×(ana-l)n-l×(ala-m)l-m=1

= (am×an)m-n×(an×al)n-l×(al×am)l-m

= (am+n)m-n×(an+l)n-l×(al+m)l-m

= am2-n2×an2-l2×al2-m2

= am2-n2+n2-l2+l2-m2

= a0
= 1

Question 9

If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,

Prove that : am - n. bn - l. cl - m = 1

Sol:

a = xm + n. yl
b = xn + l. ym
c = xl + m. yn

am - n. bn - l. cl - m = 1
LHS

= am - n. bn - l. cl - m

 =  [ x( m + n ). yl ]( m - n ) . [ x( n + l ). ym ]( n - l ) . [ x( l + m ) . yn ]( l - m )

= x( m + n )( m - n ). yl( m - n ) . x( n + l )( n - l ). ym( n - l ) . x( l + m )( l - m ). yn( l - m )

= xm2-n2+n2-l2+l2-m2.ylm-ln+mn-ml+nl-nm

= x0.y0

= 1 
= RHS

Question 10.1

Simplify : 
(xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2

Sol:

(xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2

= (xa-b)a2+ab+b2×(xb-c)b2+bc+c2×(xc-a)c2+ca+a2

= xa3-b3×xb3-c3×xc3-a3

= xa3-b3+b3-c3+c3-a3

= x0

= 1

Question 10.2

Simplify :
(xax-b)a2-ab+b2×(xbx-c)b2-bc+c2×(xcx-a)c2-ca+a2

Sol:

(xax-b)a2-ab+b2×(xbx-c)b2-bc+c2×(xcx-a)c2-ca+a2

= (xa+b)a2-ab+b2×(xb+c)b2-bc+c2×(xc+a)c2-ca+a2

= xa3+b3×xb3+c3×(xc3+a3)

= xa3+b3+b3+c3+c3+a3

= x(a3+b3+b3+c3+c3+a3)

= x2(a3+b3+c3)

No comments:

Post a Comment

Contact form

Name

Email *

Message *