SELINA Solution Class 9 Chapter 7 Indices (Exponents) Exercise 7B

Question 1

Solve for x : 22x+1 = 8

Sol:

22x+1 = 8
⇒ 22x+1 = 23
We know that if bases are equal, the powers are equal
⇒ 2x + 1 = 3
⇒ 2x = 3 - 1
⇒ 2x = 2
⇒ x = 22
⇒ x = 1

Question 1.2

Solve for x : 25x-1 = 4 23x + 1

Sol:

 25x-1 = 4  x 23x + 1
⇒  25x-1 = 2x 23x + 1
⇒  25x-1 = 22 + 3x + 1
⇒  25x-1 = 23x + 3
We know that if bases are equal, the powers are equal
⇒ 5x - 1 = 3x + 3
⇒ 5x - 3x = 3 + 1
⇒ 2x = 4
⇒ x = 42
⇒ x = 2.

Question 1.3

Solve for x :  34x + 1 = (27)x + 1

Sol:

34x + 1 = (27)x + 1
⇒ 34x + 1 = (33)x + 1
⇒ 34x + 1 = 33x + 1
We know that if bases are equal, the powers are equal
⇒ 4x + 1 = 3x + 3
⇒ 4x - 3x = 3 - 1
⇒ x = 2.

Question 1.4

Solve for x : (49)x + 4 = 72 x (343)x + 1

Sol:

(49)x + 4 = 72 x (343)x + 1

⇒ ( 7 x 7 )x + 4 = 72 ( 7 x 7 x 7 )( x + 1 )

⇒ ( 72 )x + 4  = 72( 73 )( x + 1 )

⇒ 7( 2x + 8 ) = 72 x 73x + 3

⇒ 7( 2x + 8 ) = 73x + 3 + 2

⇒ 7( 2x + 8 ) = 73x + 5
We know that if bases are equal, the powers are equal
⇒ 2x + 8 = 3x + 5
⇒ 3x - 2x = 8 - 5
⇒ x = 3

Question 2.1

Find x, if : 42x = 132

Sol:

42x = 132

⇒ ( 2 x 2 )2x = 12×2×2×2×2

⇒ ( 22 )2x = 125

⇒ 22 x 2x = 2- 5

⇒ 24x = 2- 5

We know that if bases are equal, the powers are equal
⇒ 4x = - 5
⇒ x = -54

Question 2.2

Find x, if : 2x+3=16

Sol:

2x+3=16

(2x+3)12=2×2×2×2

(2)x+32=24

We know that if bases are equal, the powers are equal.
x+32=4

⇒ x + 3 = 8
⇒ x = 8 - 3
⇒ x = 5

Question 2.3

Find x, if : (35)x+1=12527

Sol:

(35)x+1=12527

[(35)12]x+1=5×5×53×3×3

(35)x+12=(53)3

(35)x+12=(35)-3

We know that if bases are equal, the powers are equal
x+12=-3

⇒ x + 1 = - 6
⇒ x = - 6 - 1
⇒ x = - 7

Question 2.4

Find x, if : (233)x-1=278

Sol:

(233)x-1=278

[(23)13]x-1=3323

(23)x-13=(32)3

(23)x-13=(23)-3

We know that if bases are equal, the powers are equal
x-13=-3

⇒ x - 1 = - 9
⇒ x = - 9 + 1
⇒ x = - 8

Question 3.1

Solve :  4x - 2 - 2x + 1 = 0

Sol:

4x - 2 - 2x + 1 = 0
⇒ 4x - 2 = 2x + 1
⇒ (22)x - 2  = 2x + 1
⇒ 22x - 4  = 2x + 1
We know that if bases are equal, the powers are equal
⇒ 2x - 4 = x + 1
⇒ 2x - x = 4 + 1
⇒ x = 5.

Question 3.2

Solve : [3x]2 : 3x = 9 : 1

Sol:

[3x]2 : 3x = 9 : 1

[3x]23x=91

[3x]2=9×3x

[3x]2=32×3x

[3x]2=3x+2

We know that if bases are equal, the powers are equal.
⇒ x2 = x + 2
⇒ x2 - x - 2 = 0
⇒ x2 - 2x + x - 2 = 0
⇒ x( x - 2 ) + 1( x - 2 ) = 0
⇒ ( x + 1 )( x - 2 ) = 0
⇒ x + 1 = 0            or      x - 2 = 0
⇒ x = - 1                or      x = 2.

Question 4.1

Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x

Sol:

8 x 22x + 4 x 2x + 1 = 1 + 2x

⇒ 8 x (2x)2 + 4 x 2x x 21 = 1 + 2x
⇒ 8 x (2x)2 + 4 x 2x x 21 - 1 - 2x = 0
⇒ 8 x (2x)2 + 2 x ( 8 - 1 ) - 1 = 0
⇒ 8 x (2x)2 + 7( 2) - 1 = 0
⇒ 8y2 + 7y - 1 = 0                   [ y = 2x ]
⇒ 8y2 + 8y - y - 1 = 0
⇒ 8y( y + 1 ) - 1( y + 1 ) = 0
⇒ ( 8y - 1 )( y + 1 ) = 0

⇒ 8y = 1  or  y = - 1

⇒ y = 18  or  y = -1

⇒ 2x = 18 or 2x = - 1

⇒ 2x = 123 or 2x = - 1

⇒ 2x = 2-3 or 2x = - 1
⇒ x = - 3
[ ∵ 2x  = - 1 is not possible. ]

Question 4.2

Solve : 22x + 2x+2 - 4 x 23 = 0

Sol:

22x + 2x+2 - 4 x 23 = 0
⇒ ( 2x)2 + 2x. 22 - 4 x 2 x 2 x 2 = 0
⇒ ( 2x)2 + 2x. 22 - 32  = 0
Putting y = 2x
⇒ y2 + 4y - 32 = 0
⇒ y2 + 8y - 4y - 32 = 0
⇒ y( y + 8 ) - 4( y + 8 ) = 0
⇒ ( y + 8 )( y - 4 ) = 0
⇒ y + 8 = 0  or  y - 4 = 0
⇒ y = - 8 or y = 4
⇒ 2x = - 8 or 2x = 4
⇒ 2x = 22
[ ∵ 2x = - 8 is not possible. ]
⇒ x = 2.

Question 4.3

Solve : (3)x-3=(34)x+1

Sol:

(3)x-3=(34)x+1

(312)x-3=(314)x+1

3x-32=3x+14

x-32=x+14

⇒ 4( x - 3 ) = 2( x + 1 )
⇒ 4x - 12 = 2x + 2
⇒ 4x - 2x = 12 + 2
⇒ 2x = 14
⇒ x = 142
⇒ x = 7

Question 5

Find the values of m and n if : 
42m=(163)-6n=(8)2

Sol:

42m=(163)-6n=(8)2
42m=(8)2                    ....(1)

and
(163)-6n=(8)2     ....(2)
From (1)
42m=(8)2

(22)2m=(23)2

24m=[(23)12]2

24m=[23×12]2

24m= 23×12×2

24m=23

⇒ 4m = 3

⇒ m = 34

From (2), We have
(316)-6x=(8)2

(2×2×2×23)-6x=(2×2×2)2

(243)-6x=(23)2

[(24)13]-6x=[(23)12]2

[243]-6x=[232]2

243×(-6x)=232×2

2-8x=23

-8x=3

x=-83Thus m=34x=-83

Question 6

Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0

Sol:

Consider the quation
(32)x÷2y+1=1
(2×2×2×2×2)x÷2y+1=1
(25)x÷2y+1=1
[(25)12]x÷2y+1=x0

25x2÷2y+1=x0

5x2-(y+1)=0
⇒ 5x - 2( y + 1 ) = 0
⇒ 5x - 2y - 2 = 0                      ....(1)

Now consider the other equation
8y-164-x2=0
(23)y-(24)4-x2=0

23y-24(4-x2)=0

23y=24(4-x2)

3y=4(4-x2)

⇒ 3y = 16 - 2x
⇒ 2x + 3y = 16                      ...(2)

Thus, We have two equations,
5x - 2y = 2                           ...(1)
2x + 3y = 16                        ....(2)
Multiplying equation (1) by 3 and (2) by 2, We have
15x - 6y = 6                         ....(3)
4x + 6y = 32                        ....(4)
Adding equation (3) and (4), We have
19x = 38
⇒ x = 2 
Substituting the value of x in equation (1), We have
5(2) - 2y = 2
⇒ 10 - 2y = 2
⇒ 2y = 10 - 2
⇒ 2y = 8
⇒ y = 82
⇒ y = 4
Thus the values of x and y are : x = 2 and y = 4.

Question 7.1

Prove that : (xaxb)a+b-c(xbxc)b+c-a(xcxa)c+a-b

Sol:

LHS = (xaxb)a+b-c(xbxc)b+c-a(xcxa)c+a-b

= (xa-b)a+b-c×(xb-c)b+c-a×(xc-a)c+a-b

= x(a-b)(a+b-c)×x(b-c)(b+c-a)×x(c-a)(c+a-b)

= xa2+ab-ac-ab-b2+bc×xb2+bc-ab-cd-c2+ac×xc2+ac-bc-ac-a2+ab

= xa2-ac-b2+bc+b2-ab-c2+ac+c2-bc-a2+ab
= x0
= 1
= RHS

Question 7.2

Prove that :
xa(b-c)xb(a-c)÷(xbxa)c=1

Sol:

We need to prove that
xa(b-c)xb(a-c)÷(xbxa)c=1

LHS =

= xa(b-c)-b(a-c)÷xbcxac 

= xab-ac-ab+bc÷xbc-ac

= xab-ac-ab+bc-bc+ac
= x0
= 1
= RHS

Question 8

If ax = b, by = c and cz = a, prove that : xyz = 1.

Sol:

We are given that
ax = b, by = c and cz = a
Consider the equation
ax = b
⇒ axyz = byz      [ raising to the power yz on both sides ] 
⇒  axyz = (by)z
⇒ axyz = c        [ ∵ by = c ]
⇒  axyz = cz
⇒  axyz = a         [ ∵ cz = a ]
⇒  axyz = a1
⇒  xyz = 1

Question 9

If ax = by = cz and b2 = ac, prove that : y = 2azx+z

Sol:

Let ax = by = cz = k
∴ a = k1x;b=k1y;c=k1z

Also, We have b2 = ac 
(k1y)2=(k1x)×(k12) 

k2y=k1x+1z

k2y=kz+x xz

Comparing the powers we have
2y=z+xxz

y=2xzz+x

Question 10

If 5-P = 4-q = 20r, show that : 1p+1q+1r=0

Sol:

Let 5-P = 4-q = 20r = k
5-P = k ⇒ 5 = k-1p  [ap=bqa=bqp]

4-q = k ⇒ 4 = k-1q  [ap=bqa=bqp]

20r = k ⇒ 20 = k1r  [ap=bqa=bqp]

5 x 4 = 20
k-1p×k-1q=k1r 

k-1p-1q=k1r

k0=k1p+1q+1r

If bases are equal, powers are also equal.
⇒  1p+1q+1r=0

Question 11

If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0

Sol:

(m + n)-1 (m-1 + n-1) = mxny

1m+n×(1m+1n)=mx.ny

1m+n×(m+nmn)=mx.ny

1mn=mx.ny

m-1n-1=mx.ny
Comparing the coefficient of x and y, we get
x = - 1 and y = -1
LHS
y + y + 2 = ( - 1) + ( - 1) + 2 = 0 = RHS

Question 12

If 5x + 1 = 25x - 2, find the value of  3x - 3 × 23 - x.

Sol:

5x + 1 = 25x - 2 
⇒ 5x + 1 = (52)x - 2
⇒  5x + 1 = 52x - 4
If bases are equal, powers are also equal.
⇒ x + 1 = 2x - 4
⇒ 2x - x = 4 + 1
⇒ x = 5

∴ 3x - 3 x 23 - x 
= 35 - 3 x 23 - 5
= 32 x 2-2 
= 9 x 14=94

Question 13

If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.

Sol:

4x + 3 = 112 + 8 × 4
⇒ 4x x 43 = 112 + 8 x 4
⇒  64 x 4x = 112 + 8 x 4x 
Let 4x = y
64y = 112 + 8y
⇒ 56y = 112
⇒ y = 2
Substituting We get,
4= 2
⇒ 22x = 2
⇒ 2x = 1
⇒ x = 12

(18x)3x =(182)3×12=93×12=(912)3=33=27

Question 14.1

Solve for x :  4x-1 × (0.5)3 - 2x = (18)-x

SoL:

4x-1 × (0.5)3 - 2x = (18)-x

(22)x-1×(12)3-2x=(123)-x

⇒ 22x - 2 x 2-( 3 - 2x ) = (2 -3)- x

⇒ 22x - 2 - 3 + 2x = 23x

⇒ 24x - 5 = 23x
⇒ 4x - 5 = 3x
⇒ 4x - 3x = 5
⇒ x = 5

Question 14.2

Solve for x :  (a3x + 5)2. (ax)4 = a8x + 12

Sol:

(a3x + 5)2. (ax)4 = a8x + 12 

⇒ a6x + 10 + 4x = a8x + 12
If bases are the same, powers are also same
⇒ 10x + 10 = 8x + 12
⇒ 2x = 2
⇒ x = 1

Question 14.3

Solve for x : (81)34-(132)-25+x(12)-1.20=27

Sol:

(81)34-(132)-25+x(12)-1.20=27

34×34-(2-5)-25+x(2)=27

33-22+2x=27
⇒ 2x + 27 - 4 = 27
⇒ 2x = 4
⇒ x = 2

Question 14.4

Solve for x : 23x + 3 = 23x + 1 + 48

Sol:

23x + 3 = 23x + 1 + 48
⇒ 8 x 23x = 23x x 2 + 48
⇒ 23x ( 8 - 2 ) = 48
⇒ 23x x 6  = 48
⇒ 23x = 8
⇒ 23x = 23
⇒ 3x = 3
⇒ x = 1

Question 14.5

Solve for x :  3(2x + 1) - 2x + 2 + 5 = 0

Sol:

3(2x + 1) - 2x + 2 + 5 = 0
⇒ 3 x 2x + 3 - 2x x 22 + 5 = 0
⇒ 2x ( 3 - 4 ) + 8 = 0
⇒ - 2= - 8
⇒ 2= 23
⇒ x = 3

Question 14.6

Solve for x : 9x+2 = 720 + 9x

Sol:

9x+2 = 720 + 9x
⇒ 9x+2 - 9x = 720
⇒ 9x (92 - 1) = 720
⇒ 9x (81 - 1) = 720
⇒ 9x (80) = 720
⇒ 9x = 9
⇒ 9x = 91
⇒ x = 1

No comments:

Post a Comment

Contact form

Name

Email *

Message *