SELINA Solution Class 9 Chapter 8 Logarithms Exercise 8A

Question 1

Express the following in logarithmic form : 53 = 125

Sol:

53 = 125
⇒ log5125 = 3     ...[ ab = c ⇒  logac = b ]

Question 1.2

Express the following in logarithmic form :
3-2 = 19

Sol:

3-2 = 19
⇒ log319 = - 2     ....[ ab = c ⇒  logac = b ]

Question 1.3

Express the following in logarithmic form :
10-3 = 0.001

Sol:

10-3 = 0.001
⇒ log100.001 = - 3   ....[ ab = c ⇒  logac = b ]

Question 1.4

Express the following in logarithmic form : (81)34=27 

Sol:

(81)34=27 

⇒ log8127 = 34   ....[ By definition of logarithm, ab = c ⇒ logac = b ]

Question 2.1

Express the following in exponential form : log80.125 = -1

SoL:

log80.125 = -1
⇒ 8-1 = 0.125      ....[ logac = b ⇒ ab = c ]

Question 2.2

Express the following in exponential form : 
log100.01 = - 2

Sol;

log100.01 = - 2
⇒ 10-2 = 0.01  .....[ logac = b ⇒ ab = c ]

Question 2.3

Express the following in exponential form : logaA = x

Sol:

logaA = x
⇒ ax = A .....[ logac = b ⇒ ab = c  ]

Question 2.4

Express the following in exponential form : log101 = 0

Sol:

log101 = 0
⇒ 100 = 1    .....[ logac = b ⇒ ab = c ]

Question 3

Solve for x : log10 x = -2.

Sol:

log10 x = -2
⇒ 10-2 = x          ....[ logac = b ⇒ ab = c ] 
⇒ x = 10-2

⇒  x = 1102

⇒ x = 1100

⇒ x = 0.01

Question 4.1

Find the logarithm of : 100 to the base 10

Sol:

Let log10100 = x 
∴ 10x = 100
⇒ 10x = 10 x 10
⇒  10x = 10
⇒ x = 2          .....[ If am = an ; then m = n ]
∴ log10100 = 2

Question 4.2

Find the logarithm of : 0.1 to the base 10

SoL:

Let log100.1 = x
∴ 10x = 0.1
⇒ 10x = 110
⇒  10x = 10-1
⇒  x = - 1       ......[ If am = an ; then m = n ]
∴ log100.1 = - 1 

Question 4.3

Find the logarithm of : 0.001 to the base 10

Sol:

Let log100.001 = x 
∴ 10x = 0.001
⇒ 10x = 11000

⇒ 10x = 1103
⇒  10x = 10-3
⇒ x = - 3        ......[ If am = an ; then m = n ]

∴ log100.001 = - 3

Question 4.4

Find the logarithm of : 32 to the base 4

Sol:

Let log432 = x
∴ 4x = 32
⇒ (22)x = 2 x 2 x 2 x 2 x 2
⇒ 22x = 25
⇒ 2x = 5                  .....[ If am = an ; then m = n ]
⇒ x = 52
∴ log432 = 52

Question 4.5

Find the logarithm of : 0.125 to the base 2

Sol:

Let log20.125 = x
∴ 2x = 0.125
⇒ 2x = 1251000
⇒ 2x = 18
⇒ 2x = 8-1
⇒ 2x = ( 2 x 2 x 2 )-1
⇒ 2x = ( 23 )-1
⇒ 2x = 2-3
⇒ x = - 3     .....[ If am = an ; then m = n ]
∴ log20.125 = -3

Question 4.6

Find the logarithm of : 116 to the base 4

Sol:

Let log4116 = x

∴ 4x = 116

⇒ 4x = 14×4

⇒ 4x = ( 4 x 4 )-1

⇒ 4x = ( 42 )-1

⇒ 4x = 4-2

⇒ x = - 2      ....[ If am = an ; then m = n ]

∴ log4116 = - 2

Question 4.7

Find the logarithm of : 27 to the base 9

SoL:

Let log927 = x
∴ 9x = 27
⇒ ( 3 x 3 )x = 3 x 3 x 3
⇒ (32)x = 33
⇒ (32)x = 33
⇒ 2x = 3         .....[ If am = an ; then m = n ]
⇒ x = 32
∴ log927 = 32

Question 4.8

Find the logarithm of : 181 to the base 27

Sol:

Let log27181 = x

∴ 27x = 181

⇒ ( 3 x 3 x 3 )x = 13×3×3×3

⇒  (33)x = 134

⇒  (33)x = (34)-1

⇒  33x = 3-4

⇒ 3x = - 4           .....[ If am = an ; then m = n ] 

⇒ x = -43

∴ log27181=-43

Find the logarithm of : 181 to the base 27

Question 5.1

State, true or false : If log10 x = a, then 10x = a.

Sol:

Consider the equation
log10x = a
⇒ 10a = x
Thus the statement, 10x = a is false.

Question 5.2

State, true or false : If xy = z, then y = logzx .

Sol:

Consider the equation
xy = z
⇒ logxz = y
Thus the statement, logzx = y is false.

Question 5.3

State, true or false : log2 8 = 3 and log8 = 2 = 13

Sol:

Consider the equation
log28 = 3
⇒ 23 = 8                                ....(1)
Now consider the equation
log82 = 13
813=2

(23)13=2                ...(2)

Both the equations (1) and (2) are correct.
Thus the given statements, log28 = 3 and log82 = 13 are true.

Question 6.1

Find x, if : log3 x = 0

SoL:

Consider the equation
log3x = 0
⇒ 30 = x
⇒ 1 = x or x = 1

Question 6.2

Find x, if : logx 2 = - 1.

SoL:

Consider the equation
logx 2 = - 1
⇒ x-1 = 2

1x = 2

⇒ x = 12

Question 6.3

Find x, if : log9243 = x

Sol:

Consider the equation
log9243 = x
⇒ 9x = 243
⇒ (32)x = 35

⇒ 32x = 35

⇒ 2x = 5

⇒ x = 52

⇒ x = 212

Question 6.4

Find x, if : log5 (x - 7) = 1

Sol:

Consider the equation
log5 (x - 7) = 1
⇒ 51 = x - 7
⇒  5 = x - 7
⇒ x = 5 + 7
⇒ x = 12 

Question 6.5

Find x, if : log432 = x - 4

Sol:

Consider the equation
log432 = x - 4
⇒ 4x - 4 = 32
⇒  (22)x - 4 = 25
⇒  22( x - 4 ) = 25
⇒ 2x - 8 = 5 
⇒ 2x = 5 + 8 
⇒ 2x = 13

⇒ x = 132

⇒ x = 612

Question 6.6

Find x, if : log7 (2x2 - 1) = 2

SoL:

Consider the equation
log7( 2x2 - 1 ) = 2
⇒ 72 = 2x2 - 1
⇒ 7 x 7 = 2x2 - 1
⇒ 2x2 - 1 - 49 = 0
⇒ 2x2 - 50 = 0
⇒ 2x2 = 50
⇒ x2 = 502
⇒ x2 = 25
⇒ x = ±25
⇒ x = 5               .....[ neglecting the negative value ]

Question 7.1

Evaluate : log10 0.01

Sol:

Let log10 0.01 = x
⇒ 10x = 0.01
⇒ 10x = 1100
⇒ 10x = 110×10
⇒ 10x = 1102
⇒ 10x = 10-2
⇒ x = - 2
Thus, log10 0.01 = - 2

Question 7.3

Evaluate : log5 1

Sol:

Let log5 1 = x
⇒ 5x = 1
⇒ 5x = 50
⇒ x = 0
Thus, log5 1 = 0

Question 7.4

Evaluate : log5 125

Sol:

Let log5 125 = x
⇒ 5x = 125
⇒ 5x = 5 x 5 x 5
⇒ 5x = 53
⇒ x = 3
Thus, log5125 = 3

Question 7.5

Evaluate : log16 8

Sol:

Let log16 8 = x
⇒ 16x = 8
⇒  ( 2 x 2 x 2 x 2 )x = 2 x 2 x 2
⇒ ( 24 )x = 23
⇒ 24x = 23
⇒ 4x = 3 
⇒ x = 34
Thus, log16 8 = 34

Question 7.6

Evaluate : log0.5 16

Sol:

Let log0.5 16 = x
⇒ 0.5x = 16
(510)x=2×2×2×2

(12)x=24

12x=24

⇒ 2- x = 24
⇒ - x = 4
⇒ x = - 4
Thus, log0.516 = - 4

Question 8

If loga m = n, express an - 1 in terms of a and m.

Sol:

logm = n

⇒ a = m

ana=ma

an-1=ma

Question 9.1

Given log2 x = m. Express 2m - 3  in terms of x.

Sol:

log2x  = m

⇒ 2m = x 
Consider 2 = x

2m23=x23

2m-3=x8

Question 9.2

Given logy = n. Express 53n + 2 in terms of y.

Sol:

logy = n
5n = y
Consider 5n = y
(5n)3=y3
53n=y3 
53n×52=y3×52
53n+2=25y3

Question 10

If log2x = a  and log3 y = a, write 72a in terms of x and y.

SoL:

Given that :
log2x = a and log3y = a 
⇒ 2= x and 3a = y       ....[ Q logam = n ⇒  an = m ]
Now prime factorization of 72 is 
72 = 2 x 2 x 2 x 3 x 3
Hence,
(72)a = (2 x 2  x 2 x 3 x 3)a
        = (2x 32)
       = 23a x 32a 
       =  (2a)3 x (3a)2        ....[ as 2a = x , 3a = y ]
       =  x3y2

Question 11

Solve for x : log( x - 1 ) + log (x + 1 ) = log21.

Sol:

log ( x - 1) + log( x + 1) = log21
⇒ log ( x - 1 ) + log(x + 1 )= 0
⇒ log [ ( x -1 ) ( x + 1) ] = 0
⇒ ( x - 1 ) ( x + 1) = 1.... ( Since log 1 = 0 )
⇒ x2 - 1 = 1
⇒ x= 2
⇒ x = ±2
 -2 cannot be possible, since log of a negative number is not defined.
So, x = 2.

Question 12

If log (x2 - 21) = 2, show that x = ± 11.

Sol:

log (x - 21 ) = 2
⇒ x2  - 21 = 102
⇒ 
x2 - 21 = 100
⇒ x= 121
⇒ x = ±11

No comments:

Post a Comment

Contact form

Name

Email *

Message *