Express the following in logarithmic form : 53 = 125
Sol:53 = 125
⇒ log5125 = 3 ...[ ab = c ⇒ logac = b ]
Express the following in logarithmic form :
3-2 =
3-2 =
⇒ log3
Express the following in logarithmic form :
10-3 = 0.001
10-3 = 0.001
⇒ log100.001 = - 3 ....[ ab = c ⇒ logac = b ]
Express the following in logarithmic form :
⇒ log8127 =
Express the following in exponential form : log80.125 = -1
SoL:log80.125 = -1
⇒ 8-1 = 0.125 ....[ logac = b ⇒ ab = c ]
Express the following in exponential form :
log100.01 = - 2
log100.01 = - 2
⇒ 10-2 = 0.01 .....[ logac = b ⇒ ab = c ]
Express the following in exponential form : logaA = x
Sol:logaA = x
⇒ ax = A .....[ logac = b ⇒ ab = c ]
Express the following in exponential form : log101 = 0
Sol:log101 = 0
⇒ 100 = 1 .....[ logac = b ⇒ ab = c ]
Solve for x : log10 x = -2.
Sol:log10 x = -2
⇒ 10-2 = x ....[ logac = b ⇒ ab = c ]
⇒ x = 10-2
⇒ x =
⇒ x =
⇒ x = 0.01
Find the logarithm of : 100 to the base 10
Sol:Let log10100 = x
∴ 10x = 100
⇒ 10x = 10 x 10
⇒ 10x = 102
⇒ x = 2 .....[ If am = an ; then m = n ]
∴ log10100 = 2
Find the logarithm of : 0.1 to the base 10
SoL:Let log100.1 = x
∴ 10x = 0.1
⇒ 10x =
⇒ 10x = 10-1
⇒ x = - 1 ......[ If am = an ; then m = n ]
∴ log100.1 = - 1
Find the logarithm of : 0.001 to the base 10
Sol:Let log100.001 = x
∴ 10x = 0.001
⇒ 10x =
⇒ 10x =
⇒ 10x = 10-3
⇒ x = - 3 ......[ If am = an ; then m = n ]
∴ log100.001 = - 3
Find the logarithm of : 32 to the base 4
Sol:Let log432 = x
∴ 4x = 32
⇒ (22)x = 2 x 2 x 2 x 2 x 2
⇒ 22x = 25
⇒ 2x = 5 .....[ If am = an ; then m = n ]
⇒ x =
∴ log432 =
Find the logarithm of : 0.125 to the base 2
Sol:Let log20.125 = x
∴ 2x = 0.125
⇒ 2x =
⇒ 2x =
⇒ 2x = 8-1
⇒ 2x = ( 2 x 2 x 2 )-1
⇒ 2x = ( 23 )-1
⇒ 2x = 2-3
⇒ x = - 3 .....[ If am = an ; then m = n ]
∴ log20.125 = -3
Find the logarithm of :
Let log4
∴ 4x =
⇒ 4x =
⇒ 4x = ( 4 x 4 )-1
⇒ 4x = ( 42 )-1
⇒ 4x = 4-2
⇒ x = - 2 ....[ If am = an ; then m = n ]
∴ log4
Find the logarithm of : 27 to the base 9
SoL:Let log927 = x
∴ 9x = 27
⇒ ( 3 x 3 )x = 3 x 3 x 3
⇒ (32)x = 33
⇒ (32)x = 33
⇒ 2x = 3 .....[ If am = an ; then m = n ]
⇒ x =
∴ log927 =
Find the logarithm of :
Let log27
∴ 27x =
⇒ ( 3 x 3 x 3 )x =
⇒ (33)x =
⇒ (33)x = (34)-1
⇒ 33x = 3-4
⇒ 3x = - 4 .....[ If am = an ; then m = n ]
⇒ x =
∴ log27
Find the logarithm of :
State, true or false : If log10 x = a, then 10x = a.
Sol:Consider the equation
log10x = a
⇒ 10a = x
Thus the statement, 10x = a is false.
State, true or false : If xy = z, then y = logzx .
Sol:Consider the equation
xy = z
⇒ logxz = y
Thus the statement, logzx = y is false.
State, true or false : log2 8 = 3 and log8 = 2 =
Consider the equation
log28 = 3
⇒ 23 = 8 ....(1)
Now consider the equation
log82 =
⇒
⇒
Both the equations (1) and (2) are correct.
Thus the given statements, log28 = 3 and log82 =
Find x, if : log3 x = 0
SoL:Consider the equation
log3x = 0
⇒ 30 = x
⇒ 1 = x or x = 1
Find x, if : logx 2 = - 1.
SoL:Consider the equation
logx 2 = - 1
⇒ x-1 = 2
⇒
⇒ x =
Find x, if : log9243 = x
Sol:Consider the equation
log9243 = x
⇒ 9x = 243
⇒ (32)x = 35
⇒ 32x = 35
⇒ 2x = 5
⇒ x =
⇒ x =
Find x, if : log5 (x - 7) = 1
Sol:Consider the equation
log5 (x - 7) = 1
⇒ 51 = x - 7
⇒ 5 = x - 7
⇒ x = 5 + 7
⇒ x = 12
Find x, if : log432 = x - 4
Sol:Consider the equation
log432 = x - 4
⇒ 4x - 4 = 32
⇒ (22)x - 4 = 25
⇒ 22( x - 4 ) = 25
⇒ 2x - 8 = 5
⇒ 2x = 5 + 8
⇒ 2x = 13
⇒ x =
⇒ x =
Find x, if : log7 (2x2 - 1) = 2
SoL:Consider the equation
log7( 2x2 - 1 ) = 2
⇒ 72 = 2x2 - 1
⇒ 7 x 7 = 2x2 - 1
⇒ 2x2 - 1 - 49 = 0
⇒ 2x2 - 50 = 0
⇒ 2x2 = 50
⇒ x2 =
⇒ x2 = 25
⇒ x =
⇒ x = 5 .....[ neglecting the negative value ]
Evaluate : log10 0.01
Sol:Let log10 0.01 = x
⇒ 10x = 0.01
⇒ 10x =
⇒ 10x =
⇒ 10x =
⇒ 10x = 10-2
⇒ x = - 2
Thus, log10 0.01 = - 2
Evaluate : log5 1
Sol:Let log5 1 = x
⇒ 5x = 1
⇒ 5x = 50
⇒ x = 0
Thus, log5 1 = 0
Evaluate : log5 125
Sol:Let log5 125 = x
⇒ 5x = 125
⇒ 5x = 5 x 5 x 5
⇒ 5x = 53
⇒ x = 3
Thus, log5125 = 3
Evaluate : log16 8
Sol:Let log16 8 = x
⇒ 16x = 8
⇒ ( 2 x 2 x 2 x 2 )x = 2 x 2 x 2
⇒ ( 24 )x = 23
⇒ 24x = 23
⇒ 4x = 3
⇒ x =
Thus, log16 8 =
Evaluate : log0.5 16
Sol:Let log0.5 16 = x
⇒ 0.5x = 16
⇒
⇒
⇒
⇒ 2- x = 24
⇒ - x = 4
⇒ x = - 4
Thus, log0.516 = - 4
If loga m = n, express an - 1 in terms of a and m.
Sol:loga m = n
⇒ an = m
⇒
⇒
Given log2 x = m. Express 2m - 3 in terms of x.
Sol:log2x = m
⇒ 2m = x
Consider 2m = x
⇒
⇒
Given log5 y = n. Express 53n + 2 in terms of y.
Sol:log5 y = n
5n = y
Consider 5n = y
⇒
⇒
⇒
⇒
If log2x = a and log3 y = a, write 72a in terms of x and y.
SoL:Given that :
log2x = a and log3y = a
⇒ 2a = x and 3a = y ....[ Q logam = n ⇒ an = m ]
Now prime factorization of 72 is
72 = 2 x 2 x 2 x 3 x 3
Hence,
(72)a = (2 x 2 x 2 x 3 x 3)a
= (23 x 32)a
= 23a x 32a
= (2a)3 x (3a)2 ....[ as 2a = x , 3a = y ]
= x3y2
Solve for x : log( x - 1 ) + log (x + 1 ) = log21.
Sol:log ( x - 1) + log( x + 1) = log21
⇒ log ( x - 1 ) + log(x + 1 )= 0
⇒ log [ ( x -1 ) ( x + 1) ] = 0
⇒ ( x - 1 ) ( x + 1) = 1.... ( Since log 1 = 0 )
⇒ x2 - 1 = 1
⇒ x2 = 2
⇒ x =
So, x =
If log (x2 - 21) = 2, show that x = ± 11.
Sol:log (x2 - 21 ) = 2
⇒ x2 - 21 = 102
⇒ x2 - 21 = 100
⇒ x2 = 121
⇒ x =
No comments:
Post a Comment