SELINA Solution Class 9 Chapter 8 Logarithms Exercise 8B

Question 1

Express in terms of log 2 and log 3 : log 36

Sol:

log 36 = log( 2 x 2 x 3 x 3 )
           = log( 22 x 32 )
           = log( 22 ) + log( 32 ) ....[ logamn = logam + logan ]
           = 2log2 + 2log3         .....[ logamn = nlogam ]

Question 1.2

Express in terms of log 2 and log 3:

log 144

Sol:

log 144

= log( 2 × 2 × 2 × 2 × 3 × 3 )
= log( 24 x 32 )
= log( 24 ) + log( 32 )  ....[ logamn = logam + logan]
= 4log2 + 2log3          ....[ logamn = nlogam ]

Question 1.3

Express in terms of log 2 and log 3 : log 4.5

SoL:

log 4.5

= log4510

= log5×3×35×2

 = log322

= log 32 - log 2   .....[ logamn = logam - logan ]

= 2log3 - log 2   ......[ logamn = nlogam ]

Question 1.4

Express in terms of log 2 and log 3 :
log2651-log91119

Sol:

log2651-log91119

= log(265191119)  ....[logam-logan=loga(mn)]

= log2651×11991

= log2×133×17×7×177×13

= log23
= log 2 - log 3      ......[ logamn = logam - logan ]

Question 1.5

Express in terms of log 2 and log 3 :
log7516-2log59+log32243

Sol:

log7516-2log59+log32243

= log7516-log(59)2+log32243

= log7516-log(59×59)+log32243

= log7516-log2581+log32243

= log(75162581)    .....[logam-logan=loga(mn)]

= log(7516)×(8125)+log(32243)

= log3×2516×8125+log32243

= log24316+log32243

= log(24316×32243)     .....[logam + logan = logamn]

= log3216
= log 2

Question 2.1

Express the following in a form free from logarithm :2 log x - log y = 1

Sol:

Consider the given equation 
2log x - log y = 1
⇒ logx2 - log y = 1
log(x2y) = log 10

⇒  x2y=10

⇒  x2 = 10y

Question 2.2

Express the following in a form free from logarithm:
2 log x + 3 log y = log a

Sol:

Consider the given equation 
2 log x + 3 log y = log a
⇒ logx2 + logy3 = log a
⇒ log x2y3 = log a
⇒ x2y3 = a

Question 2.3

Express the following in a form free from logarithm:
a log x - b log y = 2 log 3

Sol:

Consider the given equation
alogx - blogy = 2log3
⇒ log xa - logyb = log32
log(xayb)=log9
⇒  xayb=9
⇒  xa = 9yb

Question 3.1

Evaluate  the following without using tables : 
log 5 + log 8 - 2 log 2

Sol:

Consider the given expression
log 5 + log 8 - 2 log 2        .....[ nlogam = logamn ]
= log 5 + log 8 x 8 - log 22 ......[ nlogam = logamn ]
= log 5 x 8 - log 22
= log 40 - log 4

= log404                          .....[ logam - logan = loga(mn)]
= log 10 
= 1

Question 3.2

Evaluate the following without using tables :
log 4 + 13 log 125 - 15log 32 

Sol:

Consider the given expression
log 4 + 13log 125-15 log 32

= log4+log(125)13-log(32)15     ...[ nlogam = logamn ]

= log4+log(53)13-log(25)15

= log 4 + log 5 - log 2
= log 4 x 5 - log 2                ....[ logam + logan = logamn] 
= log(202)          .....[logam-logan=loga(mn)]
= log 10
= 1

Question 3.3

Evaluate the following without using tables : 
log108 + log1025 + 2 log103 - log1018

Sol:

Consider the given expression
log108 + log1025 + 2 log103 - log1018
= log108 + log1025 + log1032 - log1018      ....[ nlogam = logamn ]
= log108 + log1025 + log109 - log1018
= log108 x 25 x 9 - log1018             ....[ logal + logam + logan = logalmn ]

= log101800 - log1018         

= log10(180018)

= log10100                       .....[ ∵ log10100 = 2]
= 2

Question 4

Prove that : 2log1518-log25162+log49=log2

Sol:

We need to prove that
2log1518-log25162+log49=log2

LHS = 2log1518-log25162+log49

= log(1518)2-log(25162)+log(49)   ....[ nlogam = logamn ]

= log[(1518)×(1518)]-log25162+log49

= log(1518)×(1518)×(49)-log(25162)  .....[logam+logan=loga(mn)]

= log(1518)×(1518)×4925162  .....[logam-logan=loga(mn)]

= log(1518)×(1518)×49×16225

= log7236
= log 2
= R.H.S.

Question 5

Find x, if : x - log 48 + 3 log 2 = 13log 125 - log 3.

Sol:

Consider the given equation
x - log 48 + 3log2 = 13log 125 - log 3

⇒ x = 13log125 - log 3 + log 48 - 3 log 2

⇒ x = log(125)13-log3+log48-log23  ....[nlogam=logamn]

⇒ x = log(5×5×5)13-log3+log48-log8

⇒ x = log(53)13-log3+log48-log8

⇒ x = log 5 - log 3 + log 48 - log 8

⇒ x = log 5 + log 48 - log 3 - log 8

⇒ x = ( log 5 + log 48 ) - ( log 3 + log 8 )

⇒ x = ( log 5 x 48 ) - ( log 3 x 8 )        ....[ logam + logan = logamn ]

⇒ x = log5×483×8      .....[logam-logan=loga(mn)]

⇒ x = log5×6×83×8

⇒ x = log 10

⇒ x = 1.

Question 6

Express log102 + 1 in the form of log10x .

Sol:

log102 + 1

= log102 + log1010         ....[ ∵ log1010 = 1 ]

= log102 x 10                ....[ logam + logan = logamn ]

= log1020.

Question 7.1

Solve for x : log10 (x - 10) = 1

Sol:

log10  ( x - 10 ) = 1
⇒ log10 ( x - 10 ) = log1010
⇒ x - 10 = 10
⇒ x = 10 + 10
⇒ x = 20.

Question 7.2

Solve for x : log (x2 - 21) = 2.

Sol:

log ( x2 - 21 ) = 2
⇒ log ( x - 21) = log 100
⇒ x2 - 21 - 100 = 0 
⇒ x2 - 121 = 0 
⇒ x = 121
⇒ x = ±121
⇒ x =±11

Question 7.3

Solve for x :  log (x - 2) + log (x + 2) = log 5

Sol:

log ( x - 2 ) + log ( x + 2 ) = log 5
⇒ log ( x - 2 ) ( x + 2) = log 5       ...[ loga m + loga n = loga mn ]
⇒ log ( x2 - 4 ) = log 5
⇒ x2 -  4 = 5 
⇒ x = 9 

⇒ x = ±9

⇒ x = ±32

⇒ x = ±

Question 7.4

Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3

Sol:

log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3

⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3  ...[ logam + loga n + loga mn]

⇒ log ( x2 - 25 ) = log2 + log32            ... [ n loga m = loga mn ]

⇒ log ( x2 - 25 ) = log 16 + log9

⇒ log ( x2 - 25 )= log 16 x 9           ...[ loga m + loga n + loga mn]  

⇒ log ( x2  - 25 ) = log 144

⇒ x2 - 25 = 144

⇒ x = 144  + 25 

⇒ x = 169

⇒ x = ±169

⇒ x =±132

⇒ x =± 13

Question 8.1

log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3

⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3  ...[ logam + loga n + loga mn]

⇒ log ( x2 - 25 ) = log2 + log32            ... [ n loga m = loga mn ]

⇒ log ( x2 - 25 ) = log 16 + log9

⇒ log ( x2 - 25 )= log 16 x 9           ...[ loga m + loga n + loga mn]  

⇒ log ( x2  - 25 ) = log 144

⇒ x2 - 25 = 144

⇒ x = 144  + 25 

⇒ x = 169

⇒ x = ±169

⇒ x =±132

⇒ x =± 13

Sol:

log81log27 = x 

⇒ x = log81log27

⇒ x = log3×3×3×3log3×3×3

⇒ x = log34log33

⇒ x = 4log33log3   ... [ n logam = logamn ]

⇒ x= 43

⇒ x = 1 13

Question 8.2

Solve for x : log128log32 = x

Sol:

 log128log32 = x

x=log128log32

x=log2×2×2×2×2×2×2log2×2×2×2×2

x=log27log25

x=7log25log2     ... [ n loga m = loga m ]

x=75

⇒ x = 1.4

Question 8.3

Solve for x : log64log8 = log x

Sol:

log64log8 = log x 

⇒ log x = log64log8 

⇒ log x = log2×2×2×2×2×2log2×2×2

⇒ log x =log26log23  

⇒ log x = 6log23log2 ... [ n loga m = loga mn

⇒ log x = 63

⇒ log x = 2 

⇒ log10 x = 2 

⇒ 102 = x 

⇒ x = 10 x 10 

⇒ x = 100

Question 9

Given that log x = m + n and log y = m - n, express the value of log 10x y2   in terms of m and n.

Sol:

 Given that
log x = m + n ; 
log y = m - n ;
Consider the expression log 10xy2

log 10x y2 

= log 10 x - log y2 
⇒ log 10 x - 2 log y  ... [ n loga m = loga mn]
⇒ log 10 + log x - 2 log y ...[ loga m + loga n = loga mn ]
⇒ 1 +  log x - 2 log y   
⇒  1 + m + n - 2 ( m - n )
⇒  1 + m + n - 2m + 2n
⇒ log 10x y2 = 1 - m + 3n.

Question 10.1

State, true or false : log 1 x log 1000 = 0

Sol:

We have,
log 1 = 0 and log 1000 = 3
∴ log 1 x log 1000 = 0 x 3 = 0
Thus the statement, log 1 x log 1000 = 0 is true.

Question 10.2

State, true or false : 
logxlogy = log x - log y

Sol:

We know that
log(mn)=logm-logn
logxlogylogx-logy
Thus the statement, logxlogy= log x - log y is false.

Question 10.3

State, true or false : 
If log25log5=logx, then x = 2.

Sol:

Given that
log25log5 = log x

log5×5log5 = log x

log52log5=logx

2log5log5=logx    ...[logamn=nlogam]

⇒ 2 = log10x
⇒ 102 = x
⇒ x = 100
Thus, the statement, x = 2 is false.

Question 10.4

State, true or false : 
log x x log y = log x + log y

Sol:

We know that
logx + log y = logxy
∴ logx + log y ≠ logx x log y
Thus the statement logx + log y = logx x log y is false.

Question 11.1

If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 12

Sol:

Given that log102 = a and log103 = b
log 12
= log 2 x 2 x 3
= log 2 x 2 + log 3       ...[ logamn = logam + logan ]
= log 22 + log 3
= 2log 2 + log 3          ...[ nlogam = logamn ]
= 2a + b                      ...[ ∵ log102 = a and log103 = b ]

Question 11.2

If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25

Sol:

log102 = a and log103 = b
log 2.25

= log225100

= log25×925×4

= log25×925×4

= log(94)

= log(32)2

= log(32)                 ...[ nlogam = logamn ]

= 2( log3 - log2 )        ...[ logam - logan = loga(mn)]
= 2( b - a )                  ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a

Question 11.3

log102 = a and log103 = b
log 2.25

= log225100

= log25×925×4

= log25×925×4

= log(94)

= log(32)2

= log(32)                 ...[ nlogam = logamn ]

= 2( log3 - log2 )        ...[ logam - logan = loga(mn)]
= 2( b - a )                  ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a

Sol:

Given that log102 = a and log103 = b
log 214
= log (94)
= log (32)2         
= 2log(32)                ...[ nlogam = logamn ]
= 2( log3 - log2 )         ...[ logam - logan = loga mn ]
= 2( b - a )                   ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a

Question 11.4

If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4 

Sol:

Given that log102 = a and log103 = b
log 5.4 
= log5410
= log2×3×3×310
= log( 2 x 3 x 3 x 3 ) - log1010   ...[ logam = logan = loga(mn) ]
= log102 + log1033 - log1010   ...[logamn = logam + logan]
= log102 + 3log103 - log1010  ...[ nlogam = logamn ]
= log102 + 3log103 - 1           ...[ ∵ log1010 = 1]
= a + 3b - 1                            ...[ ∵ log102 = a and log103 = b ]

Question 11.5

If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' : log 60

Sol:

log 60 
= log1010 x 2 x 3           ...[ logamn = logam + logan ]
= 1 + log102 + log103  ...[ ∵ log1010 = 1 ] 
= 1 + a + b                   ...[ ∵ log102 = a and log103 = b ]

Question 11.6

If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' :  log 318

Sol:

log 318

= log10(258×44)

= log10(10032)

= log10100-log1032  ...[loga(mn)=logam-logan]
= log10100-log1025
= 2 - log1025              ...[ ∵ log10100 = 2 ]
= 2 - 5log102             ...[ logamn = nlogam ]
= 2 - 5a                     ...[ ∵ log102 = a ]

Question 12.1

If log 2 = 0.3010 and log 3 = 0.4771 ;  find the value of : log 12

Sol:

We know that log 2 = 0.3010 and log 3 = 0.4771
log 12
= log 2 x 2 x 3
= log 2 x 2 + log 3           ...[ logamn = logam + logan ]
= log22 + log3
= 2log2 + log 3                ...[ nlogam = logamn ]
= 2( 0.3010 ) + 0.4771      ...[ ∵ log 2 = 0.3010 and log3 = 0.4771 ]

= 1.0791

Question 12.2

If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2

Sol:

log 2 = 0.3010 and log 3 = 0.4771
log 1.2
= log1210
= log 12 - log 10            ...[ logamn = logam - logan ]
= log 2 x 2 x 3 - 1           ...[ ∵ log 10 = 1 ]
= log 2 x 2 + log 3 - 1    ...[ logamn = logam + logan ]
= log 22 + log 3 - 1
= 2log2 + log3 - 1          ...[ nlogam = logamn ]
= 2( 0.3010 ) + 0.4771 - 1  ...[ ∵ log 2 = 0.3010 and log3 = 0.4771 ] 
= 1.0791 - 1
= 0.0791

Question 12.3

If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 3.6

Sol:

We know that log 2 = 0.3010 and log 3 = 0.4771.
log 3.6
= log3610
= log 36 - log 10       ...[loga(mn)=logam-logan]
= log 2 x 2 x 3 x 3 - 1    ...[ ∵ log 10 = 1 ]
= log 2 x 2 + log 3 x 3 - 1  ...[logamn=logam+logan]
= log 22 + log 32 - 1    ]
= 2log2 + 2log3 - 1             ...[nlogam=logamn] 
= 2(0.3010) + 2(0.4771) - 1
= 1.5562 - 1                       ...[log2=0.3010andlog3=0.4771]
= 0.5562    

Question 12.4

If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15

Sol:

We know that log 2 = 0.3010 and log 3 = 0.4771.
log 15
= log(1510×10)
= log(1510) + log 10
= log(32) + 1                   ...[ ∵ log 10 = 1 ]
= log 3 - log 2 + 1                ...[logm-logn=log(mn)]
= 0.4771 - 0.3010 + 1
= 1.1761

Question 12.5

If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25

Sol:

We know that log 2 = 0.3010 and log 3 = 0.4771
log 25
= log(254×4)
= log(1004)           ...[logamn=logam+logan]
= log 100 - log( 2 x 2 )   ...[loga(mn)=logam-logan]
= 2 - log(22)                   ...[ log 100 = 2 ]
= 2 - 2log2                     ...[logamn=nlogam]
= 2 - 2( 0.3010 )             ...[ ∵ log 2 = 0.3010 ]
= 1.398

Question 12.6

If log 2 = 0.3010 and log 3 = 0.4771; find the value of : 23 log 8

Sol:

We know that log 2 = 0.3010 and log 3 = 0.4771
23log 8
= 23 log 2 x 2 x 2
= 23 log2
= 3 x 23 log 2               ...[ logamn = nlogam ]
= 2 log 2
= 2 x 0.3010                   ...[ ∵ log 2 = 0.3010 ]
= 0.602

Question 13

Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x

Sol:

(i) Consider the given equation : 
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250     [ logamn = nlogam]

⇒ log10x2 + log1010 = log10250  [ ∵ log1010 = 1]

⇒ log10( x2 x 10 ) = log10250       [ logam + logan = logamn ]

⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x = 25
⇒ x = 5

(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1                               [ ∵ log1010 = 1]

Question 14

Given 3log x + 12log y = 2, express y in term of x.

Sol:

3log x + 12log y = 2
⇒ log x3 + log√y = 2
⇒ log x3√y  = 2
⇒  x3√y = 102
⇒ √y = 102x3
Squaring both sides, we get
y = 10000x6

⇒ y = 10000x-6

Question 15

If x = (100)a , y = (10000)b and z = (10)c , find log10yx2z3 in terms of a, b and c.

Sol:

x = (100)a , y = (10000)b and z = (10)c

⇒ log x = alog 100, log y = b log 10000 and log z = clog 10

log10yx2z3 = log10√y - log( x2z3 )

= log( 10y1/2 ) - logx2 - logz3

= log 10 + logy1/2 - logx2 - logz3
= log 10  + 12log y - 2log x - 3log z

= 1 + 12log(10000)b-2log(100)a-3log(10)c       ....(Since log 10 = 1 )

= 1 + b2log(10)4-alog(10)2-3clog10

= 1 + b2×4log10-2×2alog10-3clog10

= 1 + 2b - 4a - 3c

Question 16

If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.

Sol:

3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x

⇒ 3log 5 - 3log 3 - log 5 + 2 log( 2 x 3 ) = 2 - log x
⇒  3log 5 - 3log 3 - log 5 + 2log2 + 2log3 = 2 - log x
⇒ 2log5 - log3 + 2log2 = 2 - log x
⇒ 2log5 - log3 + 2log2 + log x = 2
⇒ log52 - log 3 + log22 + log x = 2

⇒ log(25×4×x3)=2 

⇒ log(100x3)=2

100x3=102

x3=1
⇒ x = 3.

No comments:

Post a Comment

Contact form

Name

Email *

Message *