Express in terms of log 2 and log 3 : log 36
Sol:log 36 = log( 2 x 2 x 3 x 3 )
= log( 22 x 32 )
= log( 22 ) + log( 32 ) ....[ logamn = logam + logan ]
= 2log2 + 2log3 .....[ logamn = nlogam ]
Express in terms of log 2 and log 3:
log 144
log 144
= log( 2 × 2 × 2 × 2 × 3 × 3 )
= log( 24 x 32 )
= log( 24 ) + log( 32 ) ....[ logamn = logam + logan]
= 4log2 + 2log3 ....[ logamn = nlogam ]
Express in terms of log 2 and log 3 : log 4.5
SoL:log 4.5
= log
= log
= log
= log 32 - log 2 .....[ loga
= 2log3 - log 2 ......[ logamn = nlogam ]
Express in terms of log 2 and log 3 :
=
=
=
=
= log 2 - log 3 ......[ loga
Express in terms of log 2 and log 3 :
=
=
=
=
=
=
=
=
=
= log 2
Express the following in a form free from logarithm :2 log x - log y = 1
Sol:Consider the given equation
2log x - log y = 1
⇒ logx2 - log y = 1
⇒
⇒
⇒ x2 = 10y
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Consider the given equation
2 log x + 3 log y = log a
⇒ logx2 + logy3 = log a
⇒ log x2y3 = log a
⇒ x2y3 = a
Express the following in a form free from logarithm:
a log x - b log y = 2 log 3
Consider the given equation
alogx - blogy = 2log3
⇒ log xa - logyb = log32
⇒
⇒
⇒ xa = 9yb
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Consider the given expression
log 5 + log 8 - 2 log 2 .....[ nlogam = logamn ]
= log 5 + log 8 x 8 - log 22 ......[ nlogam = logamn ]
= log 5 x 8 - log 22
= log 40 - log 4
= log
= log 10
= 1
Evaluate the following without using tables :
log 4 +
Consider the given expression
log 4 +
=
=
= log 4 + log 5 - log 2
= log 4 x 5 - log 2 ....[ logam + logan = logamn]
=
= log 10
= 1
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Consider the given expression
log108 + log1025 + 2 log103 - log1018
= log108 + log1025 + log1032 - log1018 ....[ nlogam = logamn ]
= log108 + log1025 + log109 - log1018
= log108 x 25 x 9 - log1018 ....[ logal + logam + logan = logalmn ]
= log101800 - log1018
=
=
= 2
Prove that :
We need to prove that
LHS =
=
=
=
=
=
=
= log 2
= R.H.S.
Find x, if : x - log 48 + 3 log 2 =
Consider the given equation
x - log 48 + 3log2 =
⇒ x =
⇒ x =
⇒ x =
⇒ x =
⇒ x = log 5 - log 3 + log 48 - log 8
⇒ x = log 5 + log 48 - log 3 - log 8
⇒ x = ( log 5 + log 48 ) - ( log 3 + log 8 )
⇒ x = ( log 5 x 48 ) - ( log 3 x 8 ) ....[ logam + logan = logamn ]
⇒ x = log
⇒ x =
⇒ x = log 10
⇒ x = 1.
Express log102 + 1 in the form of log10x .
Sol:log102 + 1
= log102 + log1010 ....[ ∵ log1010 = 1 ]
= log102 x 10 ....[ logam + logan = logamn ]
= log1020.
Solve for x : log10 (x - 10) = 1
Sol:log10 ( x - 10 ) = 1
⇒ log10 ( x - 10 ) = log1010
⇒ x - 10 = 10
⇒ x = 10 + 10
⇒ x = 20.
Solve for x : log (x2 - 21) = 2.
Sol:log ( x2 - 21 ) = 2
⇒ log ( x2 - 21) = log 100
⇒ x2 - 21 - 100 = 0
⇒ x2 - 121 = 0
⇒ x2 = 121
⇒ x =
⇒ x =
Solve for x : log (x - 2) + log (x + 2) = log 5
Sol:log ( x - 2 ) + log ( x + 2 ) = log 5
⇒ log ( x - 2 ) ( x + 2) = log 5 ...[ loga m + loga n = loga mn ]
⇒ log ( x2 - 4 ) = log 5
⇒ x2 - 4 = 5
⇒ x 2 = 9
⇒ x =
⇒ x =
⇒ x =
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Sol:log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3
⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3 ...[ logam + loga n + loga mn]
⇒ log ( x2 - 25 ) = log24 + log32 ... [ n loga m = loga mn ]
⇒ log ( x2 - 25 ) = log 16 + log9
⇒ log ( x2 - 25 )= log 16 x 9 ...[ loga m + loga n + loga mn]
⇒ log ( x2 - 25 ) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x =
⇒ x =
⇒ x =
log ( x + 5 ) + log ( x - 5 ) = 4log2 + 2log3
⇒ log ( x + 5 ) ( x - 5 ) = 4log 2 + 2log3 ...[ logam + loga n + loga mn]
⇒ log ( x2 - 25 ) = log24 + log32 ... [ n loga m = loga mn ]
⇒ log ( x2 - 25 ) = log 16 + log9
⇒ log ( x2 - 25 )= log 16 x 9 ...[ loga m + loga n + loga mn]
⇒ log ( x2 - 25 ) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x =
⇒ x =
⇒ x =
⇒ x =
⇒ x =
⇒ x =
⇒ x =
⇒ x=
⇒ x = 1
Solve for x :
⇒ x = 1.4
Solve for x :
⇒
⇒ log x =
⇒ log x =
⇒ log x =
⇒ log x =
⇒ log x =
⇒ log x = 2
⇒ log10 x = 2
⇒ 102 = x
⇒ x = 10 x 10
⇒ x = 100
Given that log x = m + n and log y = m - n, express the value of log
Given that
log x = m + n ;
log y = m - n ;
Consider the expression log
log
= log 10 x - log y2
⇒ log 10 x - 2 log y ... [ n loga m = loga mn]
⇒ log 10 + log x - 2 log y ...[ loga m + loga n = loga mn ]
⇒ 1 + log x - 2 log y
⇒ 1 + m + n - 2 ( m - n )
⇒ 1 + m + n - 2m + 2n
⇒ log
State, true or false : log 1 x log 1000 = 0
Sol:We have,
log 1 = 0 and log 1000 = 3
∴ log 1 x log 1000 = 0 x 3 = 0
Thus the statement, log 1 x log 1000 = 0 is true.
State, true or false :
We know that
∴
Thus the statement,
State, true or false :
If
Given that
⇒
⇒
⇒
⇒ 2 = log10x
⇒ 102 = x
⇒ x = 100
Thus, the statement, x = 2 is false.
State, true or false :
log x x log y = log x + log y
We know that
logx + log y = logxy
∴ logx + log y ≠ logx x log y
Thus the statement logx + log y = logx x log y is false.
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 12
Sol:Given that log102 = a and log103 = b
log 12
= log 2 x 2 x 3
= log 2 x 2 + log 3 ...[ logamn = logam + logan ]
= log 22 + log 3
= 2log 2 + log 3 ...[ nlogam = logamn ]
= 2a + b ...[ ∵ log102 = a and log103 = b ]
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
Sol:log102 = a and log103 = b
log 2.25
= log
= log
= log
= log
=
=
= 2( log3 - log2 ) ...[ logam - logan = loga
= 2( b - a ) ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a
log102 = a and log103 = b
log 2.25
= log
= log
= log
= log
=
=
= 2( log3 - log2 ) ...[ logam - logan = loga
= 2( b - a ) ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a
Given that log102 = a and log103 = b
log
= log
= log
= 2log
= 2( log3 - log2 ) ...[ logam - logan = loga
= 2( b - a ) ...[ ∵ log102 = a and log103 = b ]
= 2b - 2a
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
Sol:Given that log102 = a and log103 = b
log 5.4
= log
= log
= log( 2 x 3 x 3 x 3 ) - log1010 ...[ logam = logan = loga
= log102 + log1033 - log1010 ...[logamn = logam + logan]
= log102 + 3log103 - log1010 ...[ nlogam = logamn ]
= log102 + 3log103 - 1 ...[ ∵ log1010 = 1]
= a + 3b - 1 ...[ ∵ log102 = a and log103 = b ]
If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' : log 60
Sol:log 60
= log1010 x 2 x 3 ...[ logamn = logam + logan ]
= 1 + log102 + log103 ...[ ∵ log1010 = 1 ]
= 1 + a + b ...[ ∵ log102 = a and log103 = b ]
If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b' : log
log
=
=
=
=
= 2 - log1025 ...[ ∵ log10100 = 2 ]
= 2 - 5log102 ...[ logamn = nlogam ]
= 2 - 5a ...[ ∵ log102 = a ]
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
Sol:We know that log 2 = 0.3010 and log 3 = 0.4771
log 12
= log 2 x 2 x 3
= log 2 x 2 + log 3 ...[ logamn = logam + logan ]
= log22 + log3
= 2log2 + log 3 ...[ nlogam = logamn ]
= 2( 0.3010 ) + 0.4771 ...[ ∵ log 2 = 0.3010 and log3 = 0.4771 ]
= 1.0791
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
Sol:log 2 = 0.3010 and log 3 = 0.4771
log 1.2
= log
= log 12 - log 10 ...[ loga
= log 2 x 2 x 3 - 1 ...[ ∵ log 10 = 1 ]
= log 2 x 2 + log 3 - 1 ...[ logamn = logam + logan ]
= log 22 + log 3 - 1
= 2log2 + log3 - 1 ...[ nlogam = logamn ]
= 2( 0.3010 ) + 0.4771 - 1 ...[ ∵ log 2 = 0.3010 and log3 = 0.4771 ]
= 1.0791 - 1
= 0.0791
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 3.6
Sol:We know that log 2 = 0.3010 and log 3 = 0.4771.
log 3.6
= log
= log 36 - log 10 ...
= log 2 x 2 x 3 x 3 - 1 ...[ ∵ log 10 = 1 ]
= log 2 x 2 + log 3 x 3 - 1 ...
= log 22 + log 32 - 1 ]
= 2log2 + 2log3 - 1 ...
= 2(0.3010) + 2(0.4771) - 1
= 1.5562 - 1 ...
= 0.5562
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
Sol:We know that log 2 = 0.3010 and log 3 = 0.4771.
log 15
= log
= log
= log
= log 3 - log 2 + 1 ...
= 0.4771 - 0.3010 + 1
= 1.1761
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
Sol:We know that log 2 = 0.3010 and log 3 = 0.4771
log 25
= log
= log
= log 100 - log( 2 x 2 ) ...
= 2 - log(22) ...[ log 100 = 2 ]
= 2 - 2log2 ...
= 2 - 2( 0.3010 ) ...[ ∵ log 2 = 0.3010 ]
= 1.398
If log 2 = 0.3010 and log 3 = 0.4771; find the value of :
We know that log 2 = 0.3010 and log 3 = 0.4771
=
=
= 3 x
= 2 log 2
= 2 x 0.3010 ...[ ∵ log 2 = 0.3010 ]
= 0.602
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
(i) Consider the given equation :
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250 [ logamn = nlogam]
⇒ log10x2 + log1010 = log10250 [ ∵ log1010 = 1]
⇒ log10( x2 x 10 ) = log10250 [ logam + logan = logamn ]
⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x =
⇒ x = 5
(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1 [ ∵ log1010 = 1]
Given 3log x +
3log x +
⇒ log x3 + log√y = 2
⇒ log x3√y = 2
⇒ x3√y = 102
⇒ √y =
Squaring both sides, we get
y =
⇒ y =
If x = (100)a , y = (10000)b and z = (10)c , find log
x = (100)a , y = (10000)b and z = (10)c
⇒ log x = alog 100, log y = b log 10000 and log z = clog 10
= log( 10y1/2 ) - logx2 - logz3
= log 10 + logy1/2 - logx2 - logz3
= log 10 +
= 1 +
= 1 +
= 1 +
= 1 + 2b - 4a - 3c
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
Sol:3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x
⇒ 3log 5 - 3log 3 - log 5 + 2 log( 2 x 3 ) = 2 - log x
⇒ 3log 5 - 3log 3 - log 5 + 2log2 + 2log3 = 2 - log x
⇒ 2log5 - log3 + 2log2 = 2 - log x
⇒ 2log5 - log3 + 2log2 + log x = 2
⇒ log52 - log 3 + log22 + log x = 2
⇒ log
⇒ log
⇒
⇒
⇒ x = 3.
No comments:
Post a Comment