SELINA Solution Class 9 Chapter 8 Logarithms Exercise 8D

Question 1

If 32loga+23 log b - 1 = 0, find the value of a9.b4 .

Sol:

32loga+23 log b - 1 = 0

loga32+logb23 = 1

⇒ log(a32×b23)=1

⇒ log(a32×b23)=log10

(a32×b23) = 10

(a32×b23)6=106

⇒ a9 . b4 = 106

Question 2

32loga+23 log b - 1 = 0

loga32+logb23 = 1

⇒ log(a32×b23)=1

⇒ log(a32×b23)=log10

(a32×b23) = 10

(a32×b23)6=106

⇒ a9 . b4 = 106

Sol:

Given that 
x = 1 + log 2 - log 5,
y = 2 log 3 and
z = log a - log 5
Consider
x = 1 + log 2 - log 5
= log 10 + log 2 - log 5
= log( 10 x 2 ) - log 5
= log 20 - log 5
= log 205
= log 4                   ....(1)
We have
y = 2 log3
= log 32
= log 9                  ....(2)
Also we have
z = log a - log 5
= loga5             ....(3)
Given that x + y = 2z
∴ Subsitute the values of x, y, and z.
from (1), (2) and (3), We have
⇒ log 4 + log 9 = 2 log a5 

⇒ log 4 + log 9 = log(a5)2

⇒ log 4 + log 9 = log(a225)

log(4×log9)=log(a225)

log36=log(a225)

a225=36
⇒ a2 = 36 x 25
⇒ a2  = 900
⇒ a = 30.

Question 3

If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z       
(ii) 5x + y - z

Sol:

Given that
x = log 0.6 , y = log 1.25, z = log 3 - 2log 2
Consider
z = log 3 - 2log 2
= log 3 - log 22
= log 3 - log 4
= log34
= log 0.75               ....(1)

(i) x + y - z = log 0.6 + log 1.25 - log 0.75

= log0.6×1.250.75

= log[0.750.75]

= log 1 
= 0                          ...(2)

(ii) 5x + y - z = 5   ...[ ∵ x + y - z = 0 from (2) ]
= 1

Question 4

If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .

Sol:

Given that 
a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z
Consider the equation,
3a2 - 2b3 = 6log z
⇒ 3log x - 2log y = 6log z
⇒ logx3 - logy2 = logz6
⇒ log (x3y2) = logz6

⇒ x3y2=z6

x3z6=y2

y2=x3z6

⇒ y = (x3z6)12

⇒ y = (x32z62)

⇒ y = x32z3

Question 5

If loga-b2=12(loga+logb), Show that : a2 + b2 = 6ab. 

Sol:

log(a-b2)=12(loga+logb)

⇒ log(a-b2)=12(logab)

⇒ log(a-b2)= log(ab)12

(a-b2)=(ab)12

Squaring both sides we have,

(a-b2)2=ab

(a-b)24=ab

⇒ ( a - b )2 = 4ab 

⇒ a2 + b2 - 2ab = 4ab

⇒ a2 + b= 4ab + 2ab

⇒ a2 + b= 6ab.

Question 6

log(a-b2)=12(loga+logb)

⇒ log(a-b2)=12(logab)

⇒ log(a-b2)= log(ab)12

(a-b2)=(ab)12

Squaring both sides we have,

(a-b2)2=ab

(a-b)24=ab

⇒ ( a - b )2 = 4ab 

⇒ a2 + b2 - 2ab = 4ab

⇒ a2 + b= 4ab + 2ab

⇒ a2 + b= 6ab.

Sol:

Given that
a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ a2 + b+ 2ab = 25ab
⇒  ( a + b )2 = 25ab
(a+b)225=ab

(a+b5)2=ab

⇒ log(a+b5)2 = ab

2log(a+b5) = log ab

⇒ log(a+b5) = log ab

⇒ log(a+b5)=12(loga+logb)

Question 7

Given that
a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ a2 + b+ 2ab = 25ab
⇒  ( a + b )2 = 25ab
(a+b)225=ab

(a+b5)2=ab

⇒ log(a+b5)2 = ab

2log(a+b5) = log ab

⇒ log(a+b5) = log ab

⇒ log(a+b5)=12(loga+logb)

Sol:

Given that
m = log 20 and n = log 25
We also have
2log( x - 4 ) = 2m - n
⇒ 2log ( x - 4 ) = 2log 20 - log 25
⇒  log( x - 4 )2 = log202 - log 25
⇒  log( x - 4 )2 = log 400 - log 25
⇒  log( x - 4 )2 = log 40025
⇒  ( x - 4 )= 40025
⇒  ( x - 4 )= 16
⇒ x - 4 = 4
⇒ x = 4 + 4
⇒ x = 8.

Question 8

Solve for x and y ; if x > 0 and y > 0 ; log xy = log xy + 2 log 2 = 2.

Sol:

Log xy = log(xy) + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100                    ...(1) 
Now consider the equation
log(xy)+2log2=2

log(xy)+log22=2log10

log(xy)+log4=log102

log(xy)+log4=log100

(xy)×4=100

⇒  4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y
⇒ 100 = 25y2        ...[ from(1) ]

⇒ y2 = 10025
⇒ y2 = 4
⇒ y = 2               ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = 1002
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.

Question 9.1

Log xy = log(xy) + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100                    ...(1) 
Now consider the equation
log(xy)+2log2=2

log(xy)+log22=2log10

log(xy)+log4=log102

log(xy)+log4=log100

(xy)×4=100

⇒  4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y
⇒ 100 = 25y2        ...[ from(1) ]

⇒ y2 = 10025
⇒ y2 = 4
⇒ y = 2               ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = 1002
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.

Sol:

logx 625 = - 4

⇒ 625 = x- 4          ...[ Removing logarithm ]

⇒ 54 = (1x)4
⇒ 5 = 1x           ....[ Powers are same, bases are equal ]
⇒ x = 15

Question 9.2

Find x, if : logx (5x - 6) = 2

Sol:

logx (5x - 6) = 2
⇒ 5x - 6 = x             ...[ Removing logarithm ]
⇒ x2 - 5x + 6 = 0
⇒ x2 - 3x - 2x + 6 = 0
⇒ x( x - 3 ) - 2( x - 3 ) = 0
⇒ ( x - 2 )( x - 3 ) = 0
∴ x = 2, 3.

Question 9.3

Evaluate :  log58(log2516)× (log100 10)

Sol:

 log58(log2516)× (log100 10)

log10 8(log105)log1016log1025×  log1010log10100

log1023(log105)log1024log1052×log1010log10102 

log1023log10 5×log10 52log1024×log10 102log1010 

3log102log10 5×2log10 54log102×2log10 10 log1010 

⇒ 3

Question 10

 log58(log2516)× (log100 10)

log10 8(log105)log1016log1025×  log1010log10100

log1023(log105)log1024log1052×log1010log10102 

log1023log10 5×log10 52log1024×log10 102log1010 

3log102log10 5×2log10 54log102×2log10 10 log1010 

⇒ 3

Sol:

Given that
p = log 20 and q = log 25
We also have
2 log( x + 1 ) = 2p - q
⇒ 2log( x + 1 ) = 2 log 20 - log 25
⇒ log( x + 1 )2 = log202 - log 25
⇒  log( x + 1 )2 = log 400 - log 25
⇒ log( x + 1 )2 = log40025
⇒ log( x + 1 )2 = log 16
⇒ log( x + 1 )2 = log 4
⇒ x + 1 = 4
⇒ x = 4 - 1
⇒ x = 3.

Question 11

If log2( x + y ) = log3( x - y ) = log25log0.2 , find the values of x and y.

Sol:

log2( x + y ) = log25log0.2 

⇒ log2( x + y ) = log0.2 25
⇒ log2( x + y ) = log21025

log2(x+y)=log5-152

log2(x+y)=-2log55

log2(x+y)=-2

⇒  x + y = 2-2                      ...[ Removing logarithm ]

⇒  x + y = 14                    ....(1)

log3(x-y)=log25log0.2

log3(x-y)=log0.225

⇒ log3( x - y ) = log21025

log3(x-y)=log5-152

log3(x-y)=-2log55

log3(x-y)=-2          
⇒  x - y = 3-2                          ...[ Removing logarithm ]
⇒  x - y = 19                   ....(2)

Solving (1) and (2), We get
x = 1372,y=572

Question 12

Given : logxlogy=32 and log (xy) = 5; find the value of x and y.

Sol:

logxlogy=32
⇒ 2log x = 3log y
⇒ log y = 2logx3          ...(1)
log( xy ) = 5
⇒  log x + log y = 5
⇒  log x + 2logx3 = 5            ....[ Substituting (1) ] 
3logx+2logx3=5

5logx3=5
⇒ log x = 3
⇒ x = 103 
∴ x = 1000
Substituting x = 1000
log y = 2×33  
⇒ log y = 2
⇒ y = 102
∴ y = 100.

Question 13.1

Given log10x = 2a and log10= b2. Write 10a in terms of x.

Sol:

log10x = 2a
⇒ x = 102a    ...[ Removing logarithm from both sides ]
⇒ x1/2 = 10a
⇒ 10a = x1/2

Question 13.2

Given log10x = 2a and log10= b2. Write 102b + 1 in terms of y.

Sol:

log10y = b2
⇒ y = 10b/2
⇒ y4 = 102b
⇒ 10y4 = 102b x 10 
⇒ 102b + 1 = 10y4

Question 13.3

Given log10x = 2a and log10= b2.If log10p=3a-2b, express P in terms of x and y.

SoL:

We know 10a = x1/2
10b/2 = y
⇒ 10b = y
log10p = 3a - 2b
⇒  p = 103a - 2b
⇒  p = (103)a ÷  (102)b
⇒  p = ( 10a )3 ÷ ( 10b )
Substituting 10a & 10b, We get
⇒ p = ( x1/2 )÷ ( y2 )2

⇒ p = x32÷ y4

⇒ p = x32y4

Question 14

Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).

Sol:

log5( x + 1 ) - 1 = 1 + log5( x - 1 )

⇒ log5( x + 1 ) - log5( x - 1 ) = 2

log5 x+1x-1=2

x+1x-1=52

x+1x-1=25
⇒ x + 1 = 25( x - 1 )
⇒ x + 1 = 25x - 25
⇒ 25x - x = 25 + 1
⇒ 24x = 26
⇒ x = 2624=1312.

Question 15

Solve for x, if : logx49 - logx7 + log1343 + 2 = 0

Sol:

logx49 - logx7 + log1343 = - 2

⇒ logx497×343 = - 2 

⇒ logx149 = - 2
⇒ - logx 49 = - 2
⇒ logx49 = 2
⇒ 49 = x2          ...[Removing logarithm]
∴ x = 7.

Question 16

If a2 = log x , b3 = log y and a22-b33 = log c , find c in terms of x and y.

Sol:

Given a2 = log x , b3 = log y

Now a22-b33 = log c

logx2-logy3=logc

3logx-2logy6=logc

⇒ 3log x - 2log y = 6log c
⇒ log x3 - logy2 = 6log c

log(x3y2)=logc6
x3y2=c6
⇒ c = x3y26

Question 17

Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z

Sol:

(i) x - y - z

= log1012 - log42 x log109 - log100.4

= log10( 4 x 3 ) - log42 x log109 - log100.4

= log104 + log103 - log42 x 2log103 - log10(410)

= log104 + log103 - log1022log102 x 2log103 - log104 + log1010
= log104 + log103 - 2log1032- log104 + 1
= 1

(ii) 13x - y - z = 131 = 13.

Question 18

Solve for x, logx155=2-logx35.

Sol:

logx15√5 = 2 - logx3√5

⇒ logx15√5 + logx3√5 = 2

⇒ logx( 15√5 x 3√5  ) = 2

⇒ logx 225 = 2

⇒ logx 152 = 2

⇒  2logx 15 = 2

⇒ logx15 = 1
⇒ x = 15.

Question 19.1

Evaluate: loga × logc b × loga c.

Sol:

loga x logc b x loga c   

log10alog10blog10blog10clog10clog10a

⇒  1.

Question 19.2

Evaluate :  log38 ÷ log916 

SOl:

 log38 ÷ log916 

log38log916

log108log103 ×  log109log1016

3log102log103 ×  2log1034log102

⇒  32

Question 19.3

Evaluate: log58log2516×Log10010 

Sol:

log58log2516×log10010 

= log108log105log1016log1025×log1010log10100

= log1023log105log1024log1052×log1010log10102

= log1023log105×log1052log1024×log10102log1010

= 3log102log105×2log1054log102×2log1010log1010

= 3

Question 20

Show that : loga m ÷ logab m + 1 + log a

SOl:

loga m ÷ logab m = =logamlogabm  

=logmablogma[Qlogba=1logab]

=  loga ab  [Qlog×alog×b=logba]

 = loga + loga b   

 = 1 + loga

Question 21

If log√27x = 2 23 , find x.

SOl:

log√27x = 2 23

∴ log√27x =  83

∴ x = (27)83  ...[ ∵ loga x = b ⇒ x = ab ]     

∴ x = (2712)83 

∴ x = (332)83

∴ x = 3(32)×(83)

∴ x = 3

∴ x = 81

Question 22

Evaluate :1logabc+1+1logbca+1+1logcab+1

Sol:

1logabc+1+1logbca+1+1logcab+1

1logabc+logaa+1logbca+logbb+1logcab+logcc

1logaabc+1logbabc+1logcabc  ...[∵ loga b + loga c = loga bc ]

1logabcloga + 1logabclogb + 1logabclogc

loga+logb+logclogabc

logabclogabc  ...∵[ loga b + loga c = loga bc ] 

⇒ 1

No comments:

Post a Comment

Contact form

Name

Email *

Message *