SELINA Solution Class 9 Chapter 8 Logarithms Exercise 8C

Question 1.1

If log10 8 = 0.90; find the value of : log10 4

Sol:

Given that log108 = 0.90

⇒ log102 x 2 x 2 = 0.90

⇒ log1023 = 0.90

⇒ 3log102 = 0.90

⇒  log102 = 0.903

⇒  log102  = 0.30            ...(1)

log 4
= log10( 2 x 2 )
= log10( 22 )
= 2log10
= 2( 0.30 )                ...[ from(1) ]
= 0.60

Question 1.2

If log10 8 = 0.90; find the value of : log√32

Sol:

Given that log108 = 0.90

⇒ log102 x 2 x 2 = 0.90

⇒ log1023 = 0.90

⇒ 3log102 = 0.90

⇒  log102 = 0.903

⇒  log102  = 0.30            ...(1)

log √32
=log10(32)12

= 12log10(32)

= 12log10(2×2×2×2×2)

= 12log10(25)

= 12×5log102

= 12×5(0.30)           [ from(1) ] 

= 5 x 0.15
= 0.75

Question 1.3

Given that log108 = 0.90

⇒ log102 x 2 x 2 = 0.90

⇒ log1023 = 0.90

⇒ 3log102 = 0.90

⇒  log102 = 0.903

⇒  log102  = 0.30            ...(1)

log √32
=log10(32)12

= 12log10(32)

= 12log10(2×2×2×2×2)

= 12log10(25)

= 12×5log102

= 12×5(0.30)           [ from(1) ] 

= 5 x 0.15
= 0.75

Sol:

Given that log108 = 0.90

⇒ log102 x 2 x 2 = 0.90

⇒ log1023 = 0.90

⇒ 3log102 = 0.90

⇒  log102 = 0.903

⇒  log102  = 0.30            ...(1)

log 0.125

= log101251000

= log1018

= log10(12×2×2)

= log10(123)

= log102-3 
= - 3 x ( 0.30 )          [ from(1) ]
= - 0.9

Question 2.1

If log 27 = 1.431, find the value of : log 9

Sol:

log 27 = 1.431
⇒ log 3 x 3 x 3 = 1.431
⇒ log 33 = 1.431
⇒ 3log3 = 1.431
⇒ log 3 = 1.4313
⇒ log 3 = 0.477              ...(1)

log 9
= log( 3 x 3 )
= log 32
= 2 log 3
= 2 x 0.477                   ...[ from(1) ]
= 0.954

Question 2.2

If log 27 = 1.431, find the value of : log 300

Sol:

log 27 = 1.431
⇒ log 3 x 3 x 3 = 1.431
⇒ log 33 = 1.431
⇒ 3log3 = 1.431
⇒ log 3 = 1.4313
⇒ log 3 = 0.477              ...(1)

log 300
= log( 3 x 100 )
= log 3 + log 100
= log 3 + 2              ...[ ∵ log10100 = 2 ]
= 0.477 + 2
= 2.477

Question 3

If log10 a = b, find 103b - 2 in terms of a.

Sol:

log10 a = b
⇒ 10b = a

⇒ ( 10b )3 = a3    ...[ Cubing both sides ]

103b102=a3102  ...[dividing both sides by 102]

⇒ 103b - 2 = a3100

Question 4

If log5 x = y, find 52y+ 3 in terms of x.

Sol:

log5 x = y    ...[ given ]

⇒ 5y = x

⇒ (5y)2 = x2

⇒  52y = x2

⇒ 52y x 53 = x2 x 53

 ⇒ 52y + 3 = 125x2

Question 5.1

Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.

Sol:

Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n 

Consider the given expression :
32x - 3
= 32x . 3-3
=32x.133

= 32x33

= (3x)233

= m227
Therefore, 32x - 3 = m227

Question 5.2

Given: log3 m = x and log3 n = y.
Write down 31 - 2y + 3x in terms of m and n.

Sol:

Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n 
Consider the given expression :
31-2y+3x=31.3-2y.33x

= 3 . 132y.33x 

= 3(3y)2.(3x)3

= 3(n)2.(m)3

= (3m)3n2

Therefore, 31-2y+3x=(3m)3n2

Question 5.3

Given: log3 m = x and log3 n = y.
If 2 log3 A = 5x - 3y; find A in terms of m and n.

Sol:

Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n 

Consider the given expression :
2log3A = 5x - 3y
⇒ 2log3A = 5 log3m - 3log3n

⇒ log3A2 = log3m5 - log3n3

⇒ log3A2 = log3(m5n3)

⇒ A2 = (m5n3)

⇒ A = (m5n3)

Question 6.1

Simplify : log (a)3 - log a

Sol:

log (a)3 - log a 
= 3 log a - log a
= 2 log a

Question 6.2

Simplify : log (a)3 ÷  log a

Sol:

log (a)3 ÷  log a
= 3 log a ÷  log a
= 3logaloga
= 3

Question 7

If log (a + b) = log a + log b, find a in terms of b.

Sol:

log  ( a + b ) = log a + log b

⇒ log ( a + b ) = log ab

⇒ a + b= ab

⇒ a - ab = - b

⇒ - ab + a = - b

⇒ - a ( b - 1 ) = - b 

⇒ a ( b -1 ) = b

⇒ a = bb-1

Question 8.1

Prove that :  (log a)2 - (log b)2 = log (ab) . Log (ab)

Sol:

L.H.S = ( log a ) - ( log b  )

⇒ L.H.S = ( log a + log b ) ( log a - log b )

⇒ L.H.S = log ( ab ) log (ab)

⇒ L.H.S = log (ab) x log ( ab) 

⇒ L.H.S = R.H.S

Hence proved.

Question 8.2

Prove that :  If a log b + b log a - 1 = 0, then baab = 10

Sol:

Given that

a log b + b log a - 1 = 0

⇒ a log b + b log a  = 1 

⇒ log ba + logab =1

⇒ log ba + log ab = log 10

⇒ log ( ba . ab ) = log 10

⇒ ba . ab = 10

Question 9.1

 If log (a + 1) = log (4a - 3) - log 3; find a.

Sol:

Given that

 log (a + 1) = log (4a - 3) - log 3 

⇒ log (a + 1) = log (4a-33)

⇒ a + 1 = 4a-33

⇒ 3a + 3 = 4a - 3

⇒ 4a - 3a = 3 + 3

⇒ a = 6

Question 9.2

If 2 log y - log x - 3 = 0, express x in terms of y.

Sol:

2 log y - log x - 3 = 0

⇒ 2 log y - log x = 3

⇒ log y2 - log x = 3

⇒ log y2 - log x = log 1000

⇒ log y2x   = log 1000

y2x  = 1000

⇒ x = y21000

Question 9.3

2 log y - log x - 3 = 0

⇒ 2 log y - log x = 3

⇒ log y2 - log x = 3

⇒ log y2 - log x = log 1000

⇒ log y2x   = log 1000

y2x  = 1000

⇒ x = y21000

Sol:

log10 125 = 3 ( 1 - log102)

L.H.S.  = log10 125 

⇒ log10 5 x 5 x 5

⇒ log10 53

⇒ 3 log10 5        ....( 1 )

 R.H.S = 3 ( 1 - log10 2 )

⇒ 3 log10 10 - log10 2 )

⇒ 3 log10  (102) 

⇒ 3 log10 5        ......( 2 )

From ( 1 ) and ( 2 ) , we have

L.H.S. = R. H. S.

Hence proved.

Question 10

Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log x2y3z4.

Sol:

Given log x = 2m - n, log y = n - 2m, log z = 3m - 2n.

Given : log x2y3z4

We know that log(a/b) = log a - log b.

⇒ log (x2y3) - log (z4)

We know that log(ab) = log a + log b

⇒ log (x2) + log (y3) - log (z4)

⇒ 2 log x + 3 log y - 4 log z

⇒ 2(2m - n) + 3(n - 2m) - 4(3m - 2n)

⇒ 4m - 2n + 3n - 6m - 12m + 8n

⇒ -14m + 9n

Question 11

Given log x = 2m - n, log y = n - 2m, log z = 3m - 2n.

Given : log x2y3z4

We know that log(a/b) = log a - log b.

⇒ log (x2y3) - log (z4)

We know that log(ab) = log a + log b

⇒ log (x2) + log (y3) - log (z4)

⇒ 2 log x + 3 log y - 4 log z

⇒ 2(2m - n) + 3(n - 2m) - 4(3m - 2n)

⇒ 4m - 2n + 3n - 6m - 12m + 8n

⇒ -14m + 9n

Sol:

logx25-logx5=2-logx(1125)

logx52-logx5=2-logx(15)3

logx52-logx5=2-logx5-3

2logx5-logx5=2+3logx5

2logx5-logx5-3logx5=2

⇒  - 2logx5 = 2

⇒ logx5 = -1

⇒ x-1 = 5

1x = 5

⇒ x = 15.

No comments:

Post a Comment

Contact form

Name

Email *

Message *