SELINA Solution Class 9 Expansions Chapter 4 Exercise 4a

Question 1.1

Find the square of : 2a + b

Sol:

We Know that
( a + b )2 = a2 + b2 + 2ab
(2a + b)2  = 4a2 + b2 + 2 x 2a x b
                 = 4a2 + b2 + 4ab

Question 1.2

Find the square of : 3a + 7b

Sol:

We know that
( a + b )2 = a2 + b2 + 2ab
( 3a + 7b )2 = 9a2 + 49b2 + 2 x 3a x 7b
                   = 9a2 + 49b2 + 42ab

Question 1.3

Find the square of : 3a - 4b

Sol:

We know that
( a - b )2 = a2 + b2 - 2ab
( 3a - 4b )2 = 9a2 + 16b2 - 2 x 3a x 4b
                  = 9a2 + 16b2 - 24ab

Question 1.4

Find the square of : 3a2b-2b3a

Sol:

We know that,
( a - b )2 = a2 + b2 - 2ab
3a2b-2b3a=[3a2b]2+[2b3a]2-2×3a2b×2b3a

= 9a24b2+4b29a2-2

Question 2.1

Use identities to evaluate : (101)2

Sol:

(101)2 
(101)2 = (100 + 1)2
We know that,
(a + b)2 = a2 + b2 + 2ab
∴ (100 + 1)2 = 1002 + 12 + 2 x 100 x 1
                     = 10,000 + 1 + 200
                     = 10,201

Question 2.2

Use identities to evaluate : (502)2

Sol:

(502)2
(502)= (500 + 2)2
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ ( 500 + 2 )2 = 5002 + 22 + 2 x 500 x 2
                        = 250000 + 4 + 2000
                        = 2,52,004

Question 2.3

Use identities to evaluate : (97)2

Sol:

(97)2
(97)2 = (100 - 3)2
We know that,
( a - b )2 = a2 + b2 - 2ab
∴ (100 - 3)2 = 1002 + 32 - 2 x 100 x 3
                    = 10000 + 9 - 600
                    = 9,409

Quesiton 2.4

Use identities to evaluate : (998)2

Sol:

(998)2
(998)2 = (1000 - 2)2
We know that
( a - b )2 = a2 + b2 - 2ab
∴ (1000 - 2)2 = 10002 + 22 - 2 x 1000 x 2
                      = 1000000 + 4 - 4000
                      = 9,96,004

Quesiton 3.1

Evalute : (78x+45y)2

Sol:

(78x+45y)2

We know that
( a + b )2 = a2 + 2ab + b2 

(78x+45y)2=(78x)2+(45y)2+2×78x×45y

                                = 49x264+16y225+7xy5

Question 3.2

Evalute : (2x7-7y4)2

Sol:

(2x7-7y4)2

We know that
( a - b )2 = a2 - 2ab + b2 

(2x7-7y4)2=(2x7)2+(7y4)2-2×2x7×7y4

                                = 4x249+49y216-xy

Question 4.1

Evaluate : (a2b+2ba)2-(a2b-2ba)2-4

Sol:

Consider the given expression :
Let us expand the first term : [a2b+2ba]2
We know that,
( a + b )2 = a2 + b2 + 2ab

[a2b+2ba]2=(a2b)2+(2ba)2+2×a2b×2ba

                                      = a2(4b)2+(4b)2a2+2       ...(1)

Let us expand the second term : [a2b-2ba]2
We know that,
( a - b )2 = a2 + b2 - 2ab

[a2b-2ba]2=(a2b)2+(2ba)2-2×a2b×2ba

                                    = a2(4b)2+(4b)2a2-2       ...(2)
Thus from (1) and (2), the given expression is

[a2b+2ba]2-[a2b-2ba]2-4=a2(4b)2+(4b)2a2+2-a2(4b)2-(4b)2a2+2-4
                                                                         = 0.

Question 4.2

Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.

Sol:

(4a +3b)2 - (4a - 3b)2 + 48ab.
Consider the given expression:
Let us expand the first term : (4a +3b)2
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ (4a +3b)2 = (4a)2 + (3b)2 + 2 x 4a x 3b
                    = 16a2 + 9b2 + 24ab                     ....(1) 

Let us expand the second term : (4a - 3b)2
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ (4a - 3b)2 = (4a)2 + (3b)2 - 2 x 4a x 3b
                    = 16a2 + 9b2 - 24ab                         ...(2)

Thus from (1) and (2), the given expression is
(4a +3b)2 - (4a - 3b)2 + 48ab 
= 16a2 + 9b2 + 24ab - 16a2 - 9b2 + 24ab + 48ab
= 96ab

Question 5

If a + b = 7 and ab = 10; find a - b.

Sol:

We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b2
Rewrite the above equation, we have
( a - b )2 = a2  + b2 - 2ab + 4ab
               = ( a + b )2 - 4ab              ...(1)
Given that a + b = 7; ab = 10
Substitute the values of ( a + b ) and (ab)
in equation (1), we have
( a - b )2 = (7)2 - 4(10)
              = 49 - 40 = 9
⇒ a - b = ±9
⇒ a - b = ±3

Question 6

If a - b = 7 and ab = 18; find a + b.

Sol:

We know that,
( a - b )2 = a2 - 2ab + b2
and
( a + b )2 = a2 + 2ab + b2
Rewrite the above equation, we have
( a + b )2 = a2  + b2 - 2ab + 4ab
               = ( a + b )2 + 4ab              ...(1)
Given that a - b = 7; ab = 18
Substitute the values of ( a - b ) and (ab)
in equation (1), we have
( a + b )2 = (7)2 + 4(18)
              = 49 + 72 = 121
⇒ a + b = ±121
⇒ a + b = ±11

Question 7

If x + y = 72 and xy=52  ; find :  x - y  and x2 - y2

Sol:

We know that,
( x + y )2 = x2 + 2xy + y2
and
( x - y )2 = x2 - 2xy + y2
Rewrite the above equation, we have
( x - y )2 = x2  + y2 + 2xy - 4xy 
               = ( x + y )2 - 4xy              ...(1)

Given that x + y=72 and xy=52 
Substitute the values of ( x + y ) and (xy)
in equation (1), we have
( x - y )2 =(72)2-4(52)

= 494-10=94

⇒ x - y = ±94

⇒ a - b = ±(32)                       ...(2)

We know that,
x2 - y2 = ( x + y )( x - y )             ...(3)
From equation (2) we have,

x - y = ±32

Thus equation (3) becomes,

x2 - y2 = (72)(±32)            [ given x + y = 72 ]

⇒ x2 - y2 = ±214

Question 8

If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.

Sol:

(i) We know that,
( a - b )2 = a2 - 2ab + b2
and
( a + b )2 = a2 + 2ab + b2
Rewrite the above equation, we have
( a + b )2 = a2  + b2 - 2ab + 4ab
               = ( a - b )2 + 4ab              ...(1)
Given that a - b = 0.9 ; ab = 0.36
Substitute the values of ( a - b ) and (ab)
in equation (1), we have
( a + b )2 = ( 0.9 )2 + 4( 0.36 )
              = 0.81 + 1.44 = 2.25
⇒ a + b = ±2.25
⇒ a + b = ±1.5                        ..(2)

(ii) We know that,
a2 - b2 = ( a + b )( a - b )             ....(3)
From equation (2) we have,
a + b = ±1.5
Thus equation (3) becomes,
a2 - b2 = (±1.5)(0.9)                [ given a - b = 0.9 ]
⇒ a2 - b2 = ±1.35

Question 9

If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab

Sol:

(i) We know that,
( a - b )2 = a2 - 2ab + b2 
Rewrite the above identity as,
a2  + b= ( a - b ) + 2ab           ....(1)
Similarly, we know that,
( a + b )2 = a2 + 2ab + b2
Rewrite the above identity as,
 a2  + b2 = ( a + b )2 - 2ab                                     .....(2)
Adding the equations (1) and (2), we have
2( a2 + b2 ) = ( a - b )2 + 2ab + ( a + b )2 - 2ab
⇒ 2( a2 + b2 ) = ( a - b )2  + ( a + b )2
⇒ ( a2 + b2 ) = 12[(a-b)2 +(a+b)2]          ....(3)

Given that a + b = 6 ; a - b = 4
Substitute the values of ( a + b ) and (a - b)
in equation (3), we have
a2 + b2 = 12[(4)2+(6)2]

= 12[16+36]

= 522
⇒ ( a2 + b2 ) = 26                                            .....(4)

From equation (4), we have
a2 + b2 = 26
Consider the identity,
( a - b )2 = a2 + b2 - 2ab                                ....(5)
Substitute the value a - b = 4 and a2 + b2 = 26
in the above equation, we have
(4)2 = 26 - 2ab
⇒ 2ab = 26 - 16
⇒  2ab = 10
⇒  ab = 5

Question 10

If a + 1a= 6 and  a ≠ 0 find :
(i) a-1a  (ii) a2-1a2

Sol:

We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b
Thus,
(a+1a)2=a2+1a2+2×a×1a

                       = a2+1a2+2           .....(1)
Given that a+1a = 6; Substitute in equation (1), we have
(6)2=a2+1a2+2

a2+1a2=36-2

a2+1a2=34                                ....(2)

Similarly, consider
(a-1a)2=a2+1a2-2×a×1a

= a2+1a2-2   
= 34 - 2                                [ from (2) ]

(a-1a)2 = 32

(a-1a)=±32

(a-1a)=± 42                       ....(3)

(ii) We need to find  a2-1a2

We know that, a2-1a2=(a-1a)(a+1a) 

a-1a=±42;a+1a=6

Thus,
a2-1a2=(±42)(6)

a2-1a2=(±242)

Question 11

If a - 1a= 8 and  a ≠ 0 find :
(i) a+1a  (ii) a2-1a2

Sol:

We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b
Thus,
(a-1a)2=a2+1a2-2×a×1a

                       = a2+1a2-2           .....(1)
Given that a-1a = 8 ; Substitute in equation (1), we have
(8)2=a2+1a2-2

a2+1a2=64+2

a2+1a2=66                                ....(2)

Similarly, consider
(a-1a)2=a2+1a2+2×a×1a

= a2+1a2+2   
= 66 + 2                                [ from (2) ]

(a-1a)2 = 68

(a-1a)=±68

(a-1a)=± 217                       ....(3)

(ii) We need to find  a2-1a2

We know that, a2-1a2=(a-1a)(a+1a) 

a-1a=8 ;a+1a=±217

Thus,
a2-1a2=(±217)(8)

a2-1a2=(±1617)

Question 12

If a2 - 3a + 1 = 0, and a ≠ 0; find : 
(i) a+1a     (ii)a2+1a2

Sol:

(i) Consider the given equation
a2 - 3a + 1 = 0
Rewrite the given equation, we have
a2 + 1 = 3a
a2+1a=3

[a2a+1a]=3

[a+1a]=3             ...(1)

(ii) We need to find a2+1a2 :

We know the identity, ( a + b )2 = a2 + b2 + 2ab

(a+1a)2=a2+1a2+2           ....(2)

From equation (1), we have,
a+1a = 3

Thus equation (2), becomes,

(3)2=a2+1a2+2

⇒ 9 = a2+1a2+2

a2+1a2=7

Question 13

If a2 - 5a - 1 = 0 and a ≠ 0 ; find :
(i) a-1a  
(ii) a+1a
(iii) a2-1a2

Sol:

(i) Consider the given equation
   a2 - 5a - 1 = 0
Rewrite the given equation, we have
a2 - 1 = 5a
a2-1a=5

[a2a-1a]=5

a-1a=5                       .....(1)

(ii) We need to find a+1a :
We know the identity, ( a - b )2 = a2 + b2 - 2ab
(a-1a)2=a2+1a2-2

(5)2=a2+1a2-2                  [ From(1) ]

25=a2+1a2-2

a2+1a2=27                ....(2)

Now consider the identity ( a + b )2 = a2 + b2 + 2ab
(a+1a)2=a2+1a2+2

(a+1a)2=27+2              [ From(2) ]

(a+1a)2=29     

a+1a=±29              .....(3)

(iii) We need to find a2-1a2

We know the identity, a2 - b2 = ( a + b )( a - b )
a2-1a2=(a+1a)(a-1a)              ....(4)

From equation (3), we have,

a+1a=±29

From equation (1), we have,
a-1a=5;

Thus identity (4), becomes,
`a^2 - 1/a^2 = (+- sqrt29)(5)

a2-1a2=5(±29)

Question 14

If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.

Sol:

Given that ( 3x + 4y ) = 16 and xy = 4
We need to find 9x2 + 16y2.
We know that
( a + b )2 = a2 + b2 + 2ab
Consider the square of 3x + 4y :
∴ ( 3x + 4y )2 = (3x)2 + (4y)2 + 2 x 3x x 4y
⇒ ( 3x + 4y )2 = 9x2 + 16y2 + 24xy         .....(1)

Substitute the values of ( 3x + 4y ) and xy
in the above equation (1), we have
( 3x + 4y )2 = 9x2 + 16y2 + 24xy

⇒ (16)2 = 9x2 + 16y2 + 24(4)

⇒ 256 = 9x2 + 16y2 + 96

⇒ 9x2 + 16y2 = 160

Question 15

The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.

Sol:

Given x is 2 more than y, so x = y + 2
Sum of squares of x and y is 34, so x+ y= 34.
Replace x = y + 2 in the above equation and solve for y.
We get (y + 2)+ y= 34

2y+ 4y - 30 = 0
y+ 2y - 15 = 0
(y + 5)(y - 3) = 0
So y = -5 or 3
For y = -5, x =-3
For y = 3, x = 5
Product of x and y is 15 in both cases.

Question 16

The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.

Sol:

Let the two positive numbers be a and b.
Given difference between them is 5 and sum of squares is 73.

So a - b = 5, a+ b= 73
Squaring on both sides gives
(a - b)= 52
a+ b- 2ab = 25
but a+ b= 73
so 2ab = 73 - 25 = 48
ab = 24
So, the product of numbers is 24.

No comments:

Post a Comment

Contact form

Name

Email *

Message *