SELINA Solution Class 9 Expansions Chapter 4 Exercise 4B

Question 1.1

Find the cube of : 3a- 2b

Sol:

( a - b )3 = a3 - 3ab( a - b ) - b3
( 3a - 2b )3 = (3a)3 - 3 x 3a x 2b( 3a - 2b) - (2b)3
                  = 27a3 - 18ab( 3a - 2b ) - 8b3
                  = 27a3 - 54a2b + 36ab2 - 8b3

Question 1.2

Find the cube of : 5a + 3b

Sol:

( a + b )3 = a3 + 3ab( a + b ) + b3
( 5a + 3b)3 = (5a)3 + 3 x 5a x 3b( 5a + 3b) + (3b)3
                  = 125a3 + 45ab( 5a + 3b ) + 27b3
                  = 125a3 + 225a2b + 135ab2 + 27b3  

Question 1.3

Find the cube of : 2a+12a     ( a ≠ 0 )

Sol:

( a + b )3 = a3 + 3ab( a + b ) + b3
(2a+12a)3=(2a)3+3×2a×12a×(2a+12a)+(12a)3

(2a+12a)3=8a3+3(2a+12a)+1(8a)3

(2a+12a)3=8a3+6a+32a+1(8a)3

Question 1.4

Find the cube of : (3a-1a) (a0)

Sol:

( a - b )3 = a3 - 3a2b + 3ab2 - b3

(3a-1a)3

= (3a)3-3×(3a)2×1a+3.3a(1a)2-(1a)3

= 27a3-3.9a2.1a+9a.1a2-1a3

= 27a3-27a+9a-1a3.

Question 2

If  a2 + 1a2=47 and a ≠ 0   find :
(i) a+1a
(ii) a3+1a3

Sol:

(i) a+1a

a2+1a2=47

(a+1a)2=a2+1a2+2

(a+1a)2=47+2

(a+1a)2=49

a+1a=±49

a+1a=±7

(ii) a3+1a3

(a+1a)3=a3+1a3+3(a+1a)

a3+1a3=(a+1a)3-3(a+1a)

a3+1a3=(±7)3-3(±7)        [ From (1) ]

a3+1a3=±322

Question 3

If  a2+1a2 = 18; a ≠ 0 find :

(i) a-1a

(ii) a3-1a3

Sol:

a2+1a2 = 18`

(a-1a)2=a2+1a2-2

(a-1a)2=18-2 

(a-1a)2=16

a-1a=±16

a-1a=±4               ...(1)

(ii) (a-1a)3=a3-1a3-3(a-1a)

a3-1a3=(a-1a)3+3(a-1a)

a3-1a3=(±4)3+3(±4)           [ From(1) ]

a3-1a3=±76 

Question 4

If a+1a = p and a ≠ 0 ; then show that :

a3+1a3=p(p2-3) 

Sol:

Given that a+1a = p            .....(1)

(a+1a)3=a3+1a3+3(a+1a)

a3+1a3=(a+1a)3-3(a+1a)

a3+1a3=(p)3-3(p)             [ From(1) ]

a3+1a3=p(p2-3)

Question 5

If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.

Sol:

Given that a + 2b = 5 ;
We need to find a3 + 8b3 + 30ab :
Now consider the cube of a + 2b :
( a + 2b )3 = a3 + (2b)3 + 3 x a x 2b x ( a + 2b )
                  = a3 + 8b3 + 6ab x ( a + 2b )
             53 = a3 + 8b3 + 6ab x 5       [ ∵ a + 2b = 5 ]
            125 = a3 + 8b3 + 30ab
Thus the value of a3 + 8b3 + 30ab is 125.

Question 6

If (a+1a)2=3and a ≠ 0; then show:a3+a13=0

Sol:

Given that (a+1a)2=3

a+1a=±3      ....(1)

We need to find a3+1a3 :
Consider the identity,

(a+1a)3=a3+1a3+3(a+1a)

a3+1a3=(±3)3-3(±3)     [ From (1) ]

a3+1a3=±33-3(±3)

a3+1a3=0

Question 7

If a + 2b + c = 0; then show that : a3 + 8b3 + c3 = 6abc.

Sol:

Given that a + 2b + c = 0;
⇒ a + 2b = -c          ....(1)
Now consider the expansion of ( a + 2b )3 :
                                                    ( a + 2b )3 = ( - c )3
a3 + (2b)3 + 3 x a x 2b x ( a + 2b ) = -c3

⇒         a3 + 8b3 + 3 x a x 2b x (-c) = -c3          [ from (1) ]

⇒                           a3 + 8b3 - 6abc = -c  

⇒                              a3 + 8b3 - c3 = 6abc

Hence proved.

Question 8.1

Use property to evaluate : 133 + (-8)3 + (-5)3

Sol:

Property is if a + b + c = 0 then a+ b+ c= 3abc
a = 13, b = -8 and c = -5
133 + (-8)3 + (-5)= 3(13)(-8)(-5) = 1560

Question 8.2

Use property to evaluate : 73 + 33 + (-10)3

Sol:

Property is if a + b + c = 0 then a+ b+ c= 3abc
a = 7, b = 3, c = -10
73 + 33 + (-10)= 3(7)(3)(-10) = -630

Question 8.3

Use property to evaluate : 93 - 53 - 43

Sol:

Property is if a + b + c = 0 then a+ b+ c= 3abc
a = 9, b = -5, c = -4
93 - 53 - 4= 93 + (-5)3 + (-4)= 3(9)(-5)(-4) = 540

Question 8.4

Use property to evaluate : 383 + (-26)3 + (-12)3

Sol:

Property is if a + b + c = 0 then a+ b+ c= 3abc
a = 38, b = -26, c = -12
383 + (-26)3 + (-12)= 3(38)(-26)(-12) = 35568

Question 9.1

If a ≠ 0 and a-1a = 3 ; find : 
a2+1a2

Sol:

a-1a = 3

(a-1a)2=9

a2+1a2  = 9 + 2 = 11

Question 9.2

If a ≠ 0 and a-1a = 3 ; Find :
a3-1a3

Sol:

a-1a = 3...............(Given)

Taking cube on both sides,

(a-1a)3 = 27

a3+1a3-3(a-1a)=27..............[(a - b)3 = a3 - b3 -3ab(a - b)]

a3+1a3-3×3=27..............[a-1a=3]

a3+1a3-9=27

a3+1a3 = 27 + 9

a3+1a3 = 36.

Question 10.1

If a ≠ 0 and a-1a = 4 ; find : (a2+1a2)

Sol:

(a-1a)2=a2+1a2-2

a2+1a2=(a-1a)2+2

a2+1a2=(4)2+2      [a-1a=4]

a2+1a2 = 18

Question 10.2

If a ≠ 0 and a-1a = 4 ; find : (a4+1a4)

Sol:

(a-1a)2=a2+1a2-2

a2+1a2=(a-1a)2+2

a2+1a2=(4)2+2      [a-1a=4]

a2+1a2 = 18                        ...(1)

We know that,

a4+1a4=(a2+1a2)2-2

                       = `(18)^2 - 2             [ From(1) ]
                       = 324 - 2

a4+1a4=322

Question 10.3

If a ≠ 0 and a-1a = 4 ; find : (a3-1a3)

Sol:

(a-1a)3=a3-1a3-3(a-1a)

(a3-1a3)=(a-1a)3+3(a-1a)

(a3-1a3)=(4)3+3(4)         [ ∵ a-1a=4 ]

(a3-1a3)=64+12 

(a3-1a3)=76 

Question 11

If X ≠ 0 and X + 1X = 2 ; then show that :

x2+1x2=x3+1x3=x4+1x4

Sol:

(x+1x)2=x2+1x2+2

x2+1x2=(x+1x)2-2

x2+1x2=(2)2-2        [x+1x=2]

x2+1x2=2                .....(1)

(x+1x)3=x3+1x3+3(x+1x)

x3+1x3=(x+1x)3-3(x+1x)

x3+1x3=(2)3-3(2)     [x+1x=2]

x3+1x3=8-6   

x3+1x3=2                ...(2)      

We know that

x4+1x4=(x2+1x2)2-2

                       = (2)2-2               [ from (1) ]
                       = 4 - 2
x4+1x4=2                ...(3)

Thus from equations (1), (2) and (3), we have

x2+1x2=x3+1x3=x4+1x4

Question 12

If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.


Sol:

Given that 2x - 3y = 10, xy = 16

∴ (2x - 3y)3 = (10)3

⇒ 8x3 - 27y3 - 3 (2x) (3y) (2x - 3y) = 1000 

⇒ 8x3 - 27 y3 -18xy (2x - 3y) = 1000

⇒ 8x3 - 27 y3 - 18 (16) (10)  = 1000

⇒ 8x3 - 27 y3 - 2880 = 1000

⇒8x3 - 27 y3 = 1000 + 2880

⇒ 8x3 - 27 y3 =3880

Question 13.1

Expand : (3x + 5y + 2z) (3x - 5y + 2z)

Sol:

(3x + 5y + 2z) (3x - 5y + 2z)

= {(3x + 2z) + (5y)} {(3x + 2z) - (5y)}

= (3x + 2z)2 - (5y)2

{since (a + b) (a - b) = a2 - b2}

= 9x2 + 4z2 + 2 × 3x × 2z - 25y2

= 9x2 + 4z2 + 12xz - 25y2

= 9x2 + 4z- 25y2 + 12xz

Question 13.2

Expand : (3x - 5y - 2z) (3x - 5y + 2z)

Sol:

(3x - 5y - 2z) (3x - 5y + 2z)

= {(3x - 5y) - (2z)} {(3x - 5y) + (2z)}

= (3x - 5y)2 - (2z)2{since(a + b) (a - b) = a2 - b2}

= 9x2 + 25y2 - 2 × 3x × 5y - 4z2

= 9x2 + 25y2- 30xy - 4z2

= 9x2 +25y2 - 4z2 - 30xy

Question 14

The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes

Sol:

Given sum of two numbers is 9 and their product is 20.
Let the numbers be a and b.
a + b = 9
ab = 20

Squaring on both sides gives
(a+b)= 92
a+ b+ 2ab = 81
a+ b+ 40 = 81
So sum of squares is 81 - 40 = 41

Cubing on both sides gives
(a + b)= 93
a+ b+ 3ab(a + b) = 729
a+ b+ 60(9) = 729
a+ b= 729 - 540 = 189
So the sum of cubes is 189.

Question 15

Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.

Sol:

Given x - y = 5 and xy = 24 (x>y)
(x + y)= (x - y)+ 4xy = 25 + 96 = 121
So, x + y = 11; sum of these numbers is 11.

Cubing on both sides gives
(x - y)= 53
x- y- 3xy(x - y) = 125
x- y- 72(5) = 125
x- y3= 125 + 360 = 485
So, difference of their cubes is 485.

Cubing both sides, we get
(x + y)= 113
x+ y+ 3xy(x + y) = 1331
x+ y= 1331 - 72(11) = 1331 - 792 = 539
So, sum of their cubes is 539.

Question 16

If 4x+ y= a and xy = b, find the value of 2x + y.

Sol:

xy = ab                                                   ….(i)

4x+ y= a                                            ….(ii)

Now, (2x + y)2 = (2x)2 + 4xy + y2

= 4x2 + y2 + 4xy

= a + 4b                                                 ….[From (i) and (ii)]

⇒ 2x + y = ±a+4b

No comments:

Post a Comment

Contact form

Name

Email *

Message *