Find the cube of : 3a- 2b
Sol:( a - b )3 = a3 - 3ab( a - b ) - b3
( 3a - 2b )3 = (3a)3 - 3 x 3a x 2b( 3a - 2b) - (2b)3
= 27a3 - 18ab( 3a - 2b ) - 8b3
= 27a3 - 54a2b + 36ab2 - 8b3
Find the cube of : 5a + 3b
Sol:( a + b )3 = a3 + 3ab( a + b ) + b3
( 5a + 3b)3 = (5a)3 + 3 x 5a x 3b( 5a + 3b) + (3b)3
= 125a3 + 45ab( 5a + 3b ) + 27b3
= 125a3 + 225a2b + 135ab2 + 27b3
Find the cube of :
( a + b )3 = a3 + 3ab( a + b ) + b3
∴
∴
∴
Find the cube of :
( a - b )3 = a3 - 3a2b + 3ab2 - b3
=
=
=
If a2 +
(i)
(ii)
(i)
⇒
⇒
⇒
⇒
(ii)
⇒
⇒
⇒
If
(i)
(ii)
⇒
⇒
⇒
⇒
(ii)
⇒
⇒
⇒
If
Given that
⇒
⇒
⇒
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
Sol:Given that a + 2b = 5 ;
We need to find a3 + 8b3 + 30ab :
Now consider the cube of a + 2b :
( a + 2b )3 = a3 + (2b)3 + 3 x a x 2b x ( a + 2b )
= a3 + 8b3 + 6ab x ( a + 2b )
53 = a3 + 8b3 + 6ab x 5 [ ∵ a + 2b = 5 ]
125 = a3 + 8b3 + 30ab
Thus the value of a3 + 8b3 + 30ab is 125.
If
Given that
⇒
We need to find
Consider the identity,
⇒
⇒
⇒
If a + 2b + c = 0; then show that : a3 + 8b3 + c3 = 6abc.
Sol:Given that a + 2b + c = 0;
⇒ a + 2b = -c ....(1)
Now consider the expansion of ( a + 2b )3 :
( a + 2b )3 = ( - c )3
a3 + (2b)3 + 3 x a x 2b x ( a + 2b ) = -c3
⇒ a3 + 8b3 + 3 x a x 2b x (-c) = -c3 [ from (1) ]
⇒ a3 + 8b3 - 6abc = -c3
⇒ a3 + 8b3 - c3 = 6abc
Hence proved.
Use property to evaluate : 133 + (-8)3 + (-5)3
Sol:Property is if a + b + c = 0 then a3 + b3 + c3 = 3abc
a = 13, b = -8 and c = -5
133 + (-8)3 + (-5)3 = 3(13)(-8)(-5) = 1560
Use property to evaluate : 73 + 33 + (-10)3
Sol:Property is if a + b + c = 0 then a3 + b3 + c3 = 3abc
a = 7, b = 3, c = -10
73 + 33 + (-10)3 = 3(7)(3)(-10) = -630
Use property to evaluate : 93 - 53 - 43
Sol:Property is if a + b + c = 0 then a3 + b3 + c3 = 3abc
a = 9, b = -5, c = -4
93 - 53 - 43 = 93 + (-5)3 + (-4)3 = 3(9)(-5)(-4) = 540
Use property to evaluate : 383 + (-26)3 + (-12)3
Sol:Property is if a + b + c = 0 then a3 + b3 + c3 = 3abc
a = 38, b = -26, c = -12
383 + (-26)3 + (-12)3 = 3(38)(-26)(-12) = 35568
If a ≠ 0 and
If a ≠ 0 and
Taking cube on both sides,
If a ≠ 0 and
⇒
⇒
⇒
If a ≠ 0 and
⇒
⇒
⇒
We know that,
= `(18)^2 - 2 [ From(1) ]
= 324 - 2
⇒
If a ≠ 0 and
⇒
⇒
⇒
⇒
If X ≠ 0 and X +
⇒
⇒
⇒
⇒
⇒
⇒
⇒
We know that
=
= 4 - 2
⇒
Thus from equations (1), (2) and (3), we have
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
Sol:
Given that 2x - 3y = 10, xy = 16
∴ (2x - 3y)3 = (10)3
⇒ 8x3 - 27y3 - 3 (2x) (3y) (2x - 3y) = 1000
⇒ 8x3 - 27 y3 -18xy (2x - 3y) = 1000
⇒ 8x3 - 27 y3 - 18 (16) (10) = 1000
⇒ 8x3 - 27 y3 - 2880 = 1000
⇒8x3 - 27 y3 = 1000 + 2880
⇒ 8x3 - 27 y3 =3880
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
Sol:(3x + 5y + 2z) (3x - 5y + 2z)
= {(3x + 2z) + (5y)} {(3x + 2z) - (5y)}
= (3x + 2z)2 - (5y)2
{since (a + b) (a - b) = a2 - b2}
= 9x2 + 4z2 + 2 × 3x × 2z - 25y2
= 9x2 + 4z2 + 12xz - 25y2
= 9x2 + 4z2 - 25y2 + 12xz
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
Sol:(3x - 5y - 2z) (3x - 5y + 2z)
= {(3x - 5y) - (2z)} {(3x - 5y) + (2z)}
= (3x - 5y)2 - (2z)2{since(a + b) (a - b) = a2 - b2}
= 9x2 + 25y2 - 2 × 3x × 5y - 4z2
= 9x2 + 25y2- 30xy - 4z2
= 9x2 +25y2 - 4z2 - 30xy
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
Sol:Given sum of two numbers is 9 and their product is 20.
Let the numbers be a and b.
a + b = 9
ab = 20
Squaring on both sides gives
(a+b)2 = 92
a2 + b2 + 2ab = 81
a2 + b2 + 40 = 81
So sum of squares is 81 - 40 = 41
Cubing on both sides gives
(a + b)3 = 93
a3 + b3 + 3ab(a + b) = 729
a3 + b3 + 60(9) = 729
a3 + b3 = 729 - 540 = 189
So the sum of cubes is 189.
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Given x - y = 5 and xy = 24 (x>y)
(x + y)2 = (x - y)2 + 4xy = 25 + 96 = 121
So, x + y = 11; sum of these numbers is 11.
Cubing on both sides gives
(x - y)3 = 53
x3 - y3 - 3xy(x - y) = 125
x3 - y3 - 72(5) = 125
x3 - y3= 125 + 360 = 485
So, difference of their cubes is 485.
Cubing both sides, we get
(x + y)3 = 113
x3 + y3 + 3xy(x + y) = 1331
x3 + y3 = 1331 - 72(11) = 1331 - 792 = 539
So, sum of their cubes is 539.
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
Sol:xy = ab ….(i)
4x2 + y2 = a ….(ii)
Now, (2x + y)2 = (2x)2 + 4xy + y2
= 4x2 + y2 + 4xy
= a + 4b ….[From (i) and (ii)]
⇒ 2x + y =
No comments:
Post a Comment