Simplify : ( x + 6 )( x + 4 )( x - 2 )
Sol:Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + 6)(x + 4)(x - 2)
= x3 + (6 + 4 - 2)x2 + [6 × 4 + 4 × (-2) + (-2) × 6]x + 6 × 4 × (-2)
= x3 + 8x2 + (24 - 8 - 12)x - 48
= x3 + 8x2 + 4x - 48
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Sol:Using identity : (x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x - 6)(x - 4)(x + 2)
= x3 + (-6 - 4 + 2)x2 + [-6 × (-4) + (-4) × 2 + 2 × (-6)]x + (-6) × (-4) × 2
= x3 - 8x2 + (24 - 8 - 12)x + 48
= x3 - 8x2 + 4x + 48
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Sol:Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
( x - 6 )( x - 4 )( x - 2 )
= x3 + (-6 - 4 - 2)x2 + [-6 × (-4) + (-4) × (-2) + (-2) × (-6)]x + (-6) × (-4) × (-2)
= x3 - 12x2 + (24 + 8 + 12)x - 48
= x3 - 12x2 + 44x - 48
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Sol:Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + 6)(x - 4)(x - 2)
= x3 + (6 - 4 - 2)x2 + [6 × (-4) + (-4) × (-2) + (-2) × 6]x + 6 × (-4) × (-2)
= x3 - 0x2 + (-24 + 8 - 12)x + 48
= x3 - 28x + 48
Simplify using following identity :
( 2x + 3y )( 4x2 + 6xy + 9y2 )
( 2x + 3y )( 4x2 + 6xy + 9y2 )
= ( 2x + 3y )[ (2x)2 - (2x)(3y) + (3y)2 ]
= (2x)3 + (3y)3
= 8x3 + 27y3
Simplify using following identity :
=
=
=
Simplify using following identity :
=
=
=
Using suitable identity, evaluate (104)3
Sol:Using identity: (a ± b)3 = a3 ± b3 ± 3ab(a ± b)
(104)3 = (100 + 4)3
= (100)3 + (4)3 + 3 × 100 × 4(100 + 4)
= 1000000 + 64 + 1200 × 104
= 1000000 + 64 + 124800
= 1124864
Using suitable identity, evaluate (97)3
Sol:(97)3 = (100 - 3)3
= (100)3 - (3)3 - 3 × 100 × 3(100 - 3)
= 1000000 - 27 - 900 × 97
= 1000000 - 27 - 87300
= 912673
Simplify :
If a + b + c = 0, then a3 + b3 + c3 = 3abc
Now, x2 - y2 + y2 - z2 + z2 - x2 = 0
⇒ ( x2 - y2 )3 + ( y2 - z2 )3 + ( z2 - x2 )3 = 3( x2 - y2 )( y2 - z2 )( z2 -x2 ) ......(1)
And, x - y + y - z + z - x = 0
⇒ ( x - y )3 + ( y - z )3 + ( z - x )3 = 3( x - y )( y - z )( z -x ) ........(2)
Now,
=
= ( x + y )( y + z )( z + x )
If a + b + c = 0, then a3 + b3 + c3 = 3abc
Now, x2 - y2 + y2 - z2 + z2 - x2 = 0
⇒ ( x2 - y2 )3 + ( y2 - z2 )3 + ( z2 - x2 )3 = 3( x2 - y2 )( y2 - z2 )( z2 -x2 ) ......(1)
And, x - y + y - z + z - x = 0
⇒ ( x - y )3 + ( y - z )3 + ( z - x )3 = 3( x - y )( y - z )( z -x ) ........(2)
Now,
=
= ( x + y )( y + z )( z + x )
Evaluate :
Let 0.8 = a and 0.5 = b
Then, the given expression becomes
=
=
= a + b
= 0.8 + 0.5
= 1.3
Evaluate :
Let 1.2 = a and 0.3 = b
Then, the given expression becomes
=
=
=
=
=
=
=
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Sol:a3 - 8b3 + 27c3 = a3 + (-2b)3 + (3c)3
Since a - 2b + 3c = 0, we have
a3 - 8b3 + 27c3 = a3 + (-2b)3 + (3c)3
= 3(a)( -2b)(3c)
= -18abc
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Sol:x + 5y = 10
⇒ (x + 5y)3 = 103
⇒ x3 + (5y)3 + 3(x)(5y)(x + 5y) = 1000
⇒ x3 + (5y)3 + 3(x)(5y)(10) = 1000
= x3 + (5y)3 + 150xy = 1000
= x3 + (5y)3 + 150xy - 1000 = 0
If x = 3 + 2√2, find :
(i)
(ii)
(iii)
(iv)
x = 3 + 2√2
(i)
=
=
=
∴
(ii)
=
∴
(iii)
= 64 x 2√2
= 128√2
(iv)
= 128√2 + 3(4√2)
= 128√2 + 12√2
= 140√2
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
Sol:a + b = 11 and a2 + b2 = 65
Now, (a+b)2 = a2 + b2 + 2ab
⇒ (11)2 = 65 + 2ab
⇒ 121 = 65 + 2ab
⇒ 2ab = 56
⇒ ab = 28
a3 + b3 = ( a + b )( a2 - ab + b2)
= (11)(65 - 28)
= 11 x 37
= 407
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
Sol:x2 + y2 + z2 - xy - yz - zx
= 2(x2 + y2 + z2 - xy - yz - zx)
= 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx
= x2 + x2 + y2 + y2 + z2 + z2 - 2xy - 2yz - 2zx
= (x2 + y2 - 2xy) + (z2 + x2 - 2zx) + (y2 + z2 - 2yz)
= (x - y)2 + (z - x)2 + (y - z)2
Since square of any number is positive, the given equation is always positive.
Find : (a + b)(a + b)
Sol:(a + b)(a + b) = (a + b)2
= a × a + a × b + b × a + b × b
= a2 + ab + ab + b2
= a2 + b2 + 2ab
Find : (a + b)(a + b)(a + b)
Sol:(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2
Find : (a - b)(a - b)(a - b)
Sol:(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2
replacing b by -b, we get
= a3 + (-b)3 + 3a2(-b) + 3a(-b)2
= a3 - b3 - 3a2b + 3ab2
No comments:
Post a Comment