SELINA Solution Class 9 Expansions Chapter 4 Exercise 4E

Question 1.1

Simplify : ( x + 6 )( x + 4 )( x - 2 )

Sol:

Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

(x + 6)(x + 4)(x - 2)
= x3 + (6 + 4 - 2)x2 + [6 × 4 + 4 × (-2) + (-2) × 6]x + 6 × 4 × (-2)
= x3 + 8x2 + (24 - 8 - 12)x - 48
= x3 + 8x2 + 4x - 48

Question 1.2

Simplify : ( x - 6 )( x - 4 )( x + 2 )

Sol:

Using identity : (x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

(x - 6)(x - 4)(x + 2)
= x3 + (-6 - 4 + 2)x2 + [-6 × (-4) + (-4) × 2 + 2 × (-6)]x + (-6) × (-4) × 2
= x3 - 8x2 + (24 - 8 - 12)x + 48
= x3 - 8x2 + 4x + 48

Question 1.3

Simplify : ( x - 6 )( x - 4 )( x - 2 )

Sol:

Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

( x - 6 )( x - 4 )( x - 2 )
= x3 + (-6 - 4 - 2)x2 + [-6 × (-4) + (-4) × (-2) + (-2) × (-6)]x + (-6) × (-4) × (-2)
= x3 - 12x2 + (24 + 8 + 12)x - 48
= x3 - 12x2 + 44x - 48

Question 1.4

Simplify : ( x + 6 )( x - 4 )( x - 2 )

Sol:

Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

 

(x + 6)(x - 4)(x - 2)
= x3 + (6 - 4 - 2)x2 + [6 × (-4) + (-4) × (-2) + (-2) × 6]x + 6 × (-4) × (-2)
= x3 - 0x2 + (-24 + 8 - 12)x + 48
= x3 - 28x + 48 

Question 2.1

Simplify using following identity : (a±b)(a2±ab+b2)=a3±b3
( 2x + 3y )( 4x2 + 6xy + 9y2 )

Sol:

( 2x + 3y )( 4x2 + 6xy + 9y2 )
= ( 2x + 3y )[ (2x)2 - (2x)(3y) + (3y)2 ]
= (2x)3 + (3y)3
= 8x3 + 27y3

Question 2.2

Simplify using following identity : (a±b)(a2±ab+b2)=a3±b3
(3x-5x)(9x2+15+25x2)

Sol:

(3x-5x)(9x2+15+25x2)

=(3x-5x)[(3x)2+(3x)(5x)+(5x)2]

= (3x)3-(5x)3

= 27x3-125x3

Question 2.3

Simplify using following identity : (a±b)(a2±ab+b2)=a3±b3
(a3-3b)(a29+ab+9b2)

Sol:

(a3-3b)(a29+ab+9b2)

= (a3-3b)[(a3)2+(a3)(3b)+(3b)2]

= (a3)3-(3b)3

= a327-27b3

Question 3.1

Using suitable identity, evaluate (104)3

Sol:

Using identity: (a ± b)3 = a3 ± b3 ± 3ab(a ± b)
(104)3 = (100 + 4)3
= (100)3 + (4)3 + 3 × 100 × 4(100 + 4)
= 1000000 + 64 + 1200 × 104
= 1000000 + 64 + 124800
= 1124864

Question 3.2

Using suitable identity, evaluate (97)3 

Sol:

(97)= (100 - 3)3
= (100)3 - (3)3 - 3 × 100 × 3(100 - 3)
= 1000000 - 27 - 900 × 97
= 1000000 - 27 - 87300
= 912673

Question 4

Simplify :
(x2-y2)3+(y2-z2)3+(z2-x2)3(x-y)3+(y-z)3+(z-x)3

Sol:

(x2-y2)3+(y2-z2)3+(z2-x2)3(x-y)3+(y-z)3+(z-x)3

If a + b + c = 0, then a3 + b3 + c3 = 3abc
Now, x2 - y2 + y2 - z2 + z2 - x2 = 0

⇒  ( x2 - y2 )3 + ( y2 - z2 )3 + ( z2 - x2 )3 = 3( x2 - y2 )( y2 - z2 )( z2 -x2 )                                         ......(1)

And, x - y + y - z + z - x = 0

⇒  ( x - y )3 + ( y - z )3 + ( z - x )3 = 3( x - y )( y - z )( z -x )                                                          ........(2)
Now,
(x2-y2)3+(y2-z2)3+(z2-x2)3(x-y)3+(y-z)3+(z-x)3

= 3(x2-y2)(y2-z2)(z2-x2)3(x-y)(y-z)(z-x)                            .....[From (1) and (2)] 

= ( x + y )( y + z )( z + x ) 

(x2-y2)3+(y2-z2)3+(z2-x2)3(x-y)3+(y-z)3+(z-x)3

If a + b + c = 0, then a3 + b3 + c3 = 3abc
Now, x2 - y2 + y2 - z2 + z2 - x2 = 0

⇒  ( x2 - y2 )3 + ( y2 - z2 )3 + ( z2 - x2 )3 = 3( x2 - y2 )( y2 - z2 )( z2 -x2 )                                         ......(1)

And, x - y + y - z + z - x = 0

⇒  ( x - y )3 + ( y - z )3 + ( z - x )3 = 3( x - y )( y - z )( z -x )                                                          ........(2)
Now,
(x2-y2)3+(y2-z2)3+(z2-x2)3(x-y)3+(y-z)3+(z-x)3

= 3(x2-y2)(y2-z2)(z2-x2)3(x-y)(y-z)(z-x)                            .....[From (1) and (2)] 

= ( x + y )( y + z )( z + x ) 

Question 5.1

Evaluate :
0.8×0.8×0.8+0.5×0.5×0.50.8×0.8-0.8×0.5+0.5×.5

Sol:

0.8×0.8×0.8+0.5×0.5×0.50.8×0.8-0.8×0.5+0.5×.5

Let 0.8 = a and 0.5 = b
Then, the given expression becomes
a×a×a+b×b×ba×a-a×b+b×b

= a3+b3a2-ab+b2

= (a+b)(a2-ab+b2)a2-ab+b2

= a + b
= 0.8 + 0.5
= 1.3

Question 5.2

Evaluate :
1.2×1.2+1.2×0.3+0.3×0.31.2×1.2×1.2- 0.3×0.3×0.3

Sol:

1.2×1.2+1.2×0.3+0.3×0.31.2×1.2×1.2- 0.3×0.3×0.3

Let 1.2 = a and 0.3 = b
Then, the given expression becomes
a×a+a+b+b×ba×a×a-b×b×b

= a2+ab+b2a3-b3

= a2+ab+b2(a-b)(a2+ab+b2)

= 1a-b

= 11.2-0.3

= 10.9

= 109

= 119

Question 6

If a - 2b + 3c = 0; state the value of a- 8b3 + 27c3.

Sol:

a- 8b3 + 27c3 = a3 + (-2b)3 + (3c)3
Since a - 2b + 3c = 0, we have
a- 8b3 + 27c= a3 + (-2b)3 + (3c)3
= 3(a)( -2b)(3c)
= -18abc

Question 7

If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.

Sol:

x + 5y = 10
⇒ (x + 5y)3 = 103
⇒ x3 + (5y)3 + 3(x)(5y)(x + 5y) = 1000
⇒ x3 + (5y)3 + 3(x)(5y)(10) = 1000
= x3 + (5y)3 + 150xy = 1000
= x3 + (5y)3 + 150xy - 1000 = 0

Question 8

If x = 3 + 2√2, find :
(i) 1x

(ii) x-1x

(iii) (x-1x)3

(iv) x3-1x3

Sol:

x = 3 + 2√2
(i) 1x=13+22

= 13+22×3-223-22

= 3-22(3)2-(22)2

= 3-229-8

1x=3-22             ....(1)

(ii) x-1x=(3+22)-(3-22)   ...[From(2)] 
                 = 3+22-3+22
x-1x=42              ....(2)

(iii) (x-1x)3=(42)3
                          = 64 x 2√2
                          = 128√2

(iv) x3-1x3=(x-1x)3+3(x-1x)
                           = 128√2 + 3(4√2)
                           = 128√2 + 12√2
                           = 140√2

Question 9

If a + b = 11 and a2 + b2 = 65; find a3 + b3.

Sol:

a + b = 11 and a2 + b2 = 65
Now, (a+b)2 = a2 + b2 + 2ab
⇒ (11)2 = 65 + 2ab
⇒ 121 = 65 + 2ab
⇒  2ab = 56
⇒  ab = 28

a3 + b3 = ( a + b )( a2 - ab + b2)
             = (11)(65 - 28)
             = 11 x 37
             = 407

Question 10

Prove that :  x2+ y2 + z2 - xy - yz - zx  is always positive.

Sol:

x+ y+ z- xy - yz - zx

= 2(x+ y+ z- xy - yz - zx)

= 2x+ 2y+ 2z- 2xy - 2yz - 2zx

= x+ x2 + y+ y2 + z2 + z- 2xy - 2yz - 2zx

= (x2 + y2 - 2xy) + (z2 + x2 - 2zx) + (y2 + z2 - 2yz)

= (x - y)2 + (z - x)2 + (y - z)2

Since square of any number is positive, the given equation is always positive.

Question 11.1

Find : (a + b)(a + b)

Sol:

(a + b)(a + b) = (a + b)2
= a × a + a × b + b × a + b × b
= a2 + ab + ab + b2
= a2 + b2 + 2ab

Question 11.2

Find : (a + b)(a + b)(a + b)

Sol:

(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2

Question 11.3

Find : (a - b)(a - b)(a - b)

Sol:

(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2

replacing b by -b, we get
= a3 + (-b)3 + 3a2(-b) + 3a(-b)2
= a3 - b3 - 3a2b + 3ab2

No comments:

Post a Comment

Contact form

Name

Email *

Message *