SELINA Solution Class 9 Expansions Chapter 4 Exercise 4D

Question 1

If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate : 
(x+2y)2xy+(2y+3z)2yz+(3z+x)2zx

Sol:

Given that x3 + 4y3 + 9z3 = 18xyz and x + 2y + 3z = 0
x + 2y = - 3z, 2y + 3z = -x and 3z + x = -2y
Now
(x+2y)2xy+(2y+3z)2yz+(3x+x)2zx

= (-3z)2xy+(-x)2yz+(-2y)2zx

= 9z2xy+x2yz+4y2zx

= x3+4y3+9z3xyz

Given that x3 + 4y3 + 9z3 = 18xyz

(x+2y)2xy+(2y+3z)2yz+(3z+x)2zx=18xyzxyz=18

Question 2.1

If a + 1a = m and a ≠ 0 ; find in terms of 'm'; the value of :
a-1a

Sol:

Given that a + 1a = m
Now consider the expansion of (a+1a)2 :
(a+1a)2=a2+1a2+2

⇒ m2 = a2 + 1a2 + 2
⇒ a2 + 1a2 = m2 - 2
Now consider the expansion of (a-1a)2 :
(a-1a)2=a2+1a2-2

(a-1a)2=m2-2-2

(a-1a)2=m2-4

(a-1a)2=±m2-4

Question 2.2

If a + 1a = m and a ≠ 0 ; find in terms of 'm'; the value of : 
a2-1a2

Sol:

a2-1a2=(a+1a)(a-1a)         
                                               [Since a2 - b2 = ( a + b)( a - b )]
                      = m(±m2-4)
                      = ±mm2-4

Question 3.1

In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.

Sol;

( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )

= 2x2( x2 - 8x + 16 ) - 8( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x3 = - 16

Question 3.2

In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2

Sol:

( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x2 = 24

Question 3.3

In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.

Sol:

( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Constant term = -128

Question 4

If x > 0 and x2+19x2=2536,Find  x3+127x3 

Sol:

Given that
x2+19x2=2536
x2+1(3x)2=2536             ...(1)
Now consider the expansion of (x+13x)2 :
(x+13x)2=x2+1(3x)2+2×x×13x

⇒                       = x2+1(3x)2+23

⇒                       = 2536+23          [From(1)]

⇒                       = 25+2436

⇒                       = 4936

x+13x=±4936

x+13x=±76
 
We need to find x3+127x3 :
Let us consider the expansion of (x+13x)3 :
(x+13x)3=x3+127x3+3×x×13x×(x+13x)

(76)3=x3+127x3+3×x×13x×(x+13x)

343216=x3+127x3+x+13x

343216=x3+127x3+76       [∵ x+13x=76 ]

(343216-76)=x3+127x3

x3+127x3=[343-252216]

x3+127x3=(91216)

Question 5

If 2( x2 + 1 ) = 5x, find :
(i) x-1x

(ii) x3-1x3

Sol:

(i) 2( x2 + 1 ) = 5x
( x2 + 1 ) = 52x

Dividing by x, we have
x2+1x=52

(x+1x)=52                           .....(1)
Now consider the expansion of  (x+1x)2 :
(x+1x)2=x2+1x2+2

(52)2=x2+1x2+2                 [From(1)]

(52)2-2=x2+1x2

254-2=x2+1x2

x2+1x2=25-84

x2+1x2=174                     ....(2)
Now consider the expansion of (x-1x)2 :
(x-1x)2=x2+1x2-2

(x-1x)2=174-2                 [from(2)]

(x-1x)2=17-84

(x-1x)2=94

(x-1x)2=±32                  ....(3)

(ii) We know that,
(x3-1x3)=(x-1x)3+3(x-1x)

(x3-1x3)=(±32)3+3(±32)         [from(3)]

                             = ±278+92

(x3-1x3)=±27+368

(x3-1x3)=±638

Question 6.1

If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2

Sol:

a2 + b2 = 34, ab= 12

(a + b)2 = a2 + b2 + 2ab
             = 34 + 2 x 12 = 34 + 24 = 58  

(a - b)2 = a2 + b2 - 2ab
            = 34 - 2 x 12 = 34- 24 = 10

3(a + b)+ 5(a - b)2 = 3 x 58 + 5 x 10 = 174 + 50 = 224

Question 6.2

If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2

Sol:

a2 + b2 = 34, ab= 12

(a + b)2 = a2 + b2 + 2ab
             = 34 + 2 x 12 = 34 + 24 = 58  

(a - b)2 = a2 + b2 - 2ab
            = 34 - 2 x 12 = 34- 24 = 10\

7(a - b)2 - 2(a + b)= 7 x 10 - 2 x 58 = 70 - 116 = - 46

Question 7

If 3x - 4x = 4; and x ≠ 0 find : 27x3 - 64x3

Sol:

3x - 4x = 4;

We need to find 27x3 - 64x3

Let us now consider the expansion of (3x-4x)3 :
(3x-4x)3=27x3-64x3-3×3x×4x(3x-4x)

(4)3=27x3-64x3-144     [Given :3x-4x=4]

⇒ 64 + 144 = 27x3 - 64x3

⇒ 27x3 - 64x3 = 208

Question 8

If x2 + x12= 7 and  x ≠ 0; find the value of : 
7x3 + 8x - 7x3-8x

Sol:

Given that x2+1x2=7

We need to find the value of  7x3 + 8x - 7x3-8x

Consider the given equation :
x2 + 1x2 - 2 = 7 - 2  [ subtract 2 from both the sides ]

(x-1x)2=5

(x-1x)=±5                               ....(1)
7x3+8x-7x3-8x=7x3-7x3+8x-8x

= 7(x3-1x3)+8(x-1x)                 .....(2)
Now consider the expansion of (x-1x)3 :

(x-1x)3=x3-1x3-3(x-1x)

x3-1x3=(x-1x)3+3(x-1x)

x3-1x3=(5)3+3(5)         ....(3)
Now substitute the value of  x3- 1x3 in equation (2), we have
7x3+8x-7x3-8x=7(x3-1x3)+8(x-1x)

7x3+8x-7x3-8x=7[(5)3+3(5)]+8[5] [From(3)]

7x3+8x-7x3-8x=7[5(5)+3(5)]+8[5]]

7x3+8x-7x3-8x=64[5]

Question 9

If x = 1x-5and x ≠ 5. Find:x2-1x2

Sol:

Given x = 1x-5;
By cross multiplication,
⇒ x (x - 5) = 1
⇒ x2 - 5x = 1
⇒ x2 - 1 = 5x                                     ....(1)

Dividing both sides by x,
(x-1x)2=x2+1x2-2
(5)2=x2+1x2-2
x2+1x2=25+2=27           ....(2)

Let us consider the expansion of (x+1x)2 :
(x+1x)2=x2+1x2+2

(x+1x)2=27+2                   [from(2)]

(x+1x)2=29

(x+1x)=±29               ....(3)
We know that,

x2-1x2=(x+1x)(x-1x)= (±29)(5)  [From equation (1) and (3)] 

x2-1x2=±529

Question 10

If x = 15-xand x ≠ 5 findx3+1x3

Sol:

Given x = 15-x;
By cross multiplication
⇒ x( 5 - x ) = 1
⇒ x2 - 5x = -1
⇒ x2 + 1 = 5x

x2+1x=5

[x+1x]=5          ....(1)
We know that

(x3+1x3)=(x+1x)3-3(x+1x)

= (5)3-3(5)                   [ from equation (1) ]
⇒ ` x^3 + 1/x^3 = 125 - 15 = 110                    

Question 11

If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc

Sol:

Given that 3a + 5b + 4c = 0
3a + 5b = - 4c
Cubing both sides,
(3a + 5b)3 = (-4c)3
⇒ (3a)3 + (5b)3 + 3 x 3a x 5b (3a + 5b) = -64c3
⇒ 27a3 + 125b3 + 45ab x (-4c) = -64c3
⇒ 27a3 + 125b3 - 180abc = -64c3
⇒ 27a3 + 125b3 + 64c3 = 180abc             
Hence proved.

Question 12

The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.

Sol:

Let a, b be the two numbers.
.'. a + b = 7 and a3 + b3 = 133
(a + b)3 = a3 + b3 + 3ab (a + b)

⇒ (7)3 = 133 + 3ab (7)
⇒ 343 = 133 + 21ab
⇒  21ab = 343 - 133 = 210
⇒ 21ab = 210
⇒ ab= 10

Now a2 + b2 = (a + b)2 - 2ab
                     = 72 - 2 x 10 = 49 - 20 = 29

Question 13.1

Find the value of 'a':  4x2 + ax + 9 = (2x + 3)2

Sol:

4x2 + ax + 9 = (2x + 3)2
Comparing coefficients of x terms, we get
ax = 12x
so, a = 12

Question 13.2

Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2

Sol:

4x2 + ax + 9 = (2x - 3)2
Comparing coefficients of x terms, we get
ax = -12x
so, a = -12

Question 13.3

Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2

Sol:

9x2 + (7a - 5)x + 25 = (3x + 5)2
Comparing coefficients of x terms, we get
(7a - 5)x = 30x
7a - 5 = 30
7a = 35
a = 5

9x2 + (7a - 5)x + 25 = (3x + 5)2
Comparing coefficients of x terms, we get
(7a - 5)x = 30x
7a - 5 = 30
7a = 35
a = 5

Question 14.1

If x2+1x=313 and x > 1; Find Ifx-1x

Sol:

Given x2+1x=313

x2+1x=103

[x+1x]=103

Squaring on both sides, we get

x2+1x2+2=1009

x2+1x2=100-189=829

x-1x=(x+1x)2-4=1009-4=649=83

x-1x=83

Question 14.2

If x2+1x=313 and x > 1; Find Ifx3-1x3

Sol:

Given x2+1x=313

x2+1x=103

[x+1x]=103

Squaring on both sides, we get

x2+1x2+2=1009

x2+1x2=100-189=829

x-1x=(x+1x)2-4=1009-4=649=83

x-1x=83

Cubing both sides, we get

(x-1x)3=51227

x3-1x3-3(x-1x)=51227

x3-1x3=51227+8=512+21627=72827

Question 15.1

The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product

Sol:

Given difference between two positive numbers is 4 and difference between their cubes is 316.
Let the positive numbers be a and b
a - b = 4
a- b= 316
Cubing both sides,
(a - b)= 64
a- b- 3ab(a - b) = 64

Given a- b= 316
So 316 - 64 = 3ab(4)
252 = 12ab
So ab = 21; product of numbers is 21

Question 15.2

The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares

Sol:

Given difference between two positive numbers is 4 and difference between their cubes is 316.
Let the positive numbers be a and b
a - b = 4                         .....(1)
a- b= 316                  .....(2)

Squaring(eq 1) both sides, we get
(a - b)= 16
a+ b- 2ab = 16
a+ b= 16 + 42 = 58
Sum of their squares is 58.

No comments:

Post a Comment

Contact form

Name

Email *

Message *