If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
Given that x3 + 4y3 + 9z3 = 18xyz and x + 2y + 3z = 0
x + 2y = - 3z, 2y + 3z = -x and 3z + x = -2y
Now
=
=
=
Given that x3 + 4y3 + 9z3 = 18xyz
∴
If a +
Given that a +
Now consider the expansion of
⇒ m2 = a2 +
⇒ a2 +
Now consider the expansion of
⇒
⇒
⇒
If a +
[Since a2 - b2 = ( a + b)( a - b )]
=
=
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
Sol;( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 2x2( x2 - 8x + 16 ) - 8( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x3 = - 16
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
Sol:( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x2 = 24
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
Sol:( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Constant term = -128
If x > 0 and
Given that
⇒
Now consider the expansion of
⇒ =
⇒ =
⇒ =
⇒ =
⇒
⇒
We need to find
Let us consider the expansion of
⇒
⇒
⇒
⇒
⇒
⇒
If 2( x2 + 1 ) = 5x, find :
(i)
(ii)
(i) 2( x2 + 1 ) = 5x
( x2 + 1 ) =
Dividing by x, we have
⇒
Now consider the expansion of
⇒
⇒
⇒
⇒
⇒
Now consider the expansion of
⇒
⇒
⇒
⇒
(ii) We know that,
∴
=
⇒
⇒
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
Sol:a2 + b2 = 34, ab= 12
(a + b)2 = a2 + b2 + 2ab
= 34 + 2 x 12 = 34 + 24 = 58
(a - b)2 = a2 + b2 - 2ab
= 34 - 2 x 12 = 34- 24 = 10
3(a + b)2 + 5(a - b)2 = 3 x 58 + 5 x 10 = 174 + 50 = 224
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
Sol:a2 + b2 = 34, ab= 12
(a + b)2 = a2 + b2 + 2ab
= 34 + 2 x 12 = 34 + 24 = 58
(a - b)2 = a2 + b2 - 2ab
= 34 - 2 x 12 = 34- 24 = 10\
7(a - b)2 - 2(a + b)2 = 7 x 10 - 2 x 58 = 70 - 116 = - 46
If 3x -
3x -
We need to find 27x3 -
Let us now consider the expansion of
⇒
⇒ 64 + 144 = 27x3 -
⇒ 27x3 -
If x2 +
7x3 + 8x -
Given that
We need to find the value of 7x3 + 8x -
Consider the given equation :
x2 +
⇒
⇒
∴
=
Now consider the expansion of
⇒
⇒
Now substitute the value of
⇒
⇒
⇒
If x =
Given x =
By cross multiplication,
⇒ x (x - 5) = 1
⇒ x2 - 5x = 1
⇒ x2 - 1 = 5x ....(1)
Dividing both sides by x,
⇒
⇒
Let us consider the expansion of
⇒
⇒
⇒
We know that,
If x =
Given x =
By cross multiplication
⇒ x( 5 - x ) = 1
⇒ x2 - 5x = -1
⇒ x2 + 1 = 5x
⇒
We know that
=
⇒ ` x^3 + 1/x^3 = 125 - 15 = 110
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
Sol:Given that 3a + 5b + 4c = 0
3a + 5b = - 4c
Cubing both sides,
(3a + 5b)3 = (-4c)3
⇒ (3a)3 + (5b)3 + 3 x 3a x 5b (3a + 5b) = -64c3
⇒ 27a3 + 125b3 + 45ab x (-4c) = -64c3
⇒ 27a3 + 125b3 - 180abc = -64c3
⇒ 27a3 + 125b3 + 64c3 = 180abc
Hence proved.
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
Sol:Let a, b be the two numbers.
.'. a + b = 7 and a3 + b3 = 133
(a + b)3 = a3 + b3 + 3ab (a + b)
⇒ (7)3 = 133 + 3ab (7)
⇒ 343 = 133 + 21ab
⇒ 21ab = 343 - 133 = 210
⇒ 21ab = 210
⇒ ab= 10
Now a2 + b2 = (a + b)2 - 2ab
= 72 - 2 x 10 = 49 - 20 = 29
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
Sol:4x2 + ax + 9 = (2x + 3)2
Comparing coefficients of x terms, we get
ax = 12x
so, a = 12
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
Sol:4x2 + ax + 9 = (2x - 3)2
Comparing coefficients of x terms, we get
ax = -12x
so, a = -12
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
Sol:9x2 + (7a - 5)x + 25 = (3x + 5)2
Comparing coefficients of x terms, we get
(7a - 5)x = 30x
7a - 5 = 30
7a = 35
a = 5
9x2 + (7a - 5)x + 25 = (3x + 5)2
Comparing coefficients of x terms, we get
(7a - 5)x = 30x
7a - 5 = 30
7a = 35
a = 5
If
Given
Squaring on both sides, we get
∴
If
Given
Squaring on both sides, we get
∴
Cubing both sides, we get
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
Given difference between two positive numbers is 4 and difference between their cubes is 316.
Let the positive numbers be a and b
a - b = 4
a3 - b3 = 316
Cubing both sides,
(a - b)3 = 64
a3 - b3 - 3ab(a - b) = 64
Given a3 - b3 = 316
So 316 - 64 = 3ab(4)
252 = 12ab
So ab = 21; product of numbers is 21
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares
Given difference between two positive numbers is 4 and difference between their cubes is 316.
Let the positive numbers be a and b
a - b = 4 .....(1)
a3 - b3 = 316 .....(2)
Squaring(eq 1) both sides, we get
(a - b)2 = 16
a2 + b2 - 2ab = 16
a2 + b2 = 16 + 42 = 58
Sum of their squares is 58.
No comments:
Post a Comment