SELINA Solution Class 9 Expansions Chapter 4 Exercise 4C

Question 1.1

Expand : ( x + 8 ) ( x + 10 )

Sol:

( x + 8 )( x + 10 ) = x2 + ( 8 + 10 )x + 8 x 10
                            = x2 + 18x + 80

Question 1.2

Expand : ( x + 8 )( x - 10 )

Sol:

( x + 8 )( x - 10 ) = x2 + ( 8 - 10 )x + 8 x (-10)
                           = x2 - 2x - 80

Question 1.3

Expand : ( X - 8 ) ( X + 10 )

Sol:

( X - 8 ) ( X + 10 ) = X2 - ( 8 - 10 )X - 8 x 10
                            = X2 + 2X - 80

Question 1.4

Expand : ( x - 8 )( x - 10 )

Sol:

( x - 8 )( x - 10 )

= x(x - 10) - 8(x - 10)

= x2 - 10x - 8x + 80

= x2 - 18x + 80

Question 2.1

Expand : (2x-1x)(3x+2x)

Sol:

(2x-1x)(3x+2x)=(2x)(3x)-(1x)(3x)+(2x)(2x)-(1x)(2x)

= 6x2-(3-2)-2x2

= 6x2-(-1)-2x2

= 6x2+1-2x2

Question 2.2

Expand : (3a+2b)(2a-3b)

Sol:

(3a+2b)(2a-3b)=(3a)(2a)+(2b)(2a)-(3b)(3a)-(2b)(3b)

= 6a2+(4b-9b)a-6b2

= 6a2+(-5b)a-6b2

= 6a2-5ab-6b2

Question 3.1

Expand : ( x + y - z )2

Sol:

( x + y - z )2 = x2 + y2 + z2 + 2(x)(y) - 2(y)(z) - 2(z)(x)
= x2 + y2 + z2 + 2xy - 2yz - 2zx

Question 3.2

Expand : ( x - 2y + 2 )

Sol:

( x - 2y + 2 )2  = x2 + (2y)2 + (2)2 - 2(x)(2y) - 2(2y)(2) + 2(2)(x)
= x2 + 4y2 + 4 - 4xy - 8y + 4x

Question 3.3

Expand : ( 5a - 3b + c )2

Sol:

( 5a - 3b + c)2 = (5a)2 + (3b)2 + (c)2 - 2(5a)(3b) - 2(3b)(c) + 2(c)(5a)

= 25a2 + 9b2 + c2 - 30ab - 6bc + 10ca

Question 3.4

Expand : ( 5x - 3y - 2 )2

Sol:

( 5x - 3y - 2 )= (5x)2 + (3y)2 + (2)2 - 2(5x)(3y) + 2(3y)(2) - 2(2)(5x)

= 25x2 + 9y2 + 4 - 30xy + 12y - 20x

Question 3.5

Expand : (x-1x+5)2

Sol:

(x-1x+5)2=(x)2+(1x)2+(5)2-2(x)(1x)-2(1x)(5)+2(5)(x) 

=x2+1x2+25-2-10x+10x 

=x2+1x2+23-10x+10x

Question 4

If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.

Sol:

We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )       .......(1)
Given that, a2 + b2 + c2 = 50 and a + b + c = 12.
We need to find ab + bc + ca :
Substitute the values of  (a2 + b2 + c2 ) and ( a + b + c )
in the identity (1), we have
(12)2 = 50 + 2( ab + bc + ca )

⇒ 144 = 50 + 2( ab + bc + ca )
⇒ 94 = 2( ab + bc + ca)
⇒ ab + bc + ca = 942
⇒ ab + bc + ca = 47

Question 5

If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.

Sol:

We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )     ....(1)
Given that, a2 + b2 + c2 = 35 and ab + bc + ca = 23
We need to find a + b + c :
Substitute the values of ( a2 + b2 + c2 ) and ( ab + bc + ca )
in the identity (1), we have
( a + b + c )2 = 35 + 2(23)
⇒ ( a + b + c )2 = 81
⇒ a + b + c = ±81 
⇒ a + b + c = ±9

Question 6

If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.

Sol:

We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )    .....(1)
Given that, a + b + c = p and ab + bc + ca = q
We need to find a2 + b2 + c2 :
Substitute the values of ( ab + bc + ca ) and ( a + b + c )
in the identity (1), we have
(p)2 = a2 + b2 + c2 + 2q
⇒ p2 = a2 + b2 + c2 + 2q
⇒ a2 + b2 + c2 = p2 - 2q

Question 7

If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.

Sol:

a2 + b2 + c2 = 50 and ab + bc + ca = 47
Since ( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )
∴ ( a + b + c )2 = 50 + 2(47)
⇒ ( a + b + c )2 = 50 + 94 = 144
⇒ a + b +c = 144=±12
∴ a + b + c = ±12

Question 8

If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.

Sol:

x + y - z = 4 and x2 + y2 + z2 = 30
Since ( x + y - z)2 = x2 + y2 + z2 + 2( xy - yz - zx ), we have
(4)2 = 30 + 2( xy - yz - zx )
⇒ 16 = 30 + 2( xy - yz - zx )
⇒ 2( xy - yz - zx ) = -14
⇒ xy - yz - zx = -142 = -7
∴ xy - yz - zx = -7

No comments:

Post a Comment

Contact form

Name

Email *

Message *