Expand : ( x + 8 ) ( x + 10 )
Sol:( x + 8 )( x + 10 ) = x2 + ( 8 + 10 )x + 8 x 10
= x2 + 18x + 80
Expand : ( x + 8 )( x - 10 )
Sol:( x + 8 )( x - 10 ) = x2 + ( 8 - 10 )x + 8 x (-10)
= x2 - 2x - 80
Expand : ( X - 8 ) ( X + 10 )
Sol:( X - 8 ) ( X + 10 ) = X2 - ( 8 - 10 )X - 8 x 10
= X2 + 2X - 80
Expand : ( x - 8 )( x - 10 )
Sol:( x - 8 )( x - 10 )
= x(x - 10) - 8(x - 10)
= x2 - 10x - 8x + 80
= x2 - 18x + 80
Expand :
=
=
=
Expand :
=
=
=
Expand : ( x + y - z )2
Sol:( x + y - z )2 = x2 + y2 + z2 + 2(x)(y) - 2(y)(z) - 2(z)(x)
= x2 + y2 + z2 + 2xy - 2yz - 2zx
Expand : ( x - 2y + 2 )2
Sol:( x - 2y + 2 )2 = x2 + (2y)2 + (2)2 - 2(x)(2y) - 2(2y)(2) + 2(2)(x)
= x2 + 4y2 + 4 - 4xy - 8y + 4x
Expand : ( 5a - 3b + c )2
Sol:( 5a - 3b + c)2 = (5a)2 + (3b)2 + (c)2 - 2(5a)(3b) - 2(3b)(c) + 2(c)(5a)
= 25a2 + 9b2 + c2 - 30ab - 6bc + 10ca
Expand : ( 5x - 3y - 2 )2
Sol:( 5x - 3y - 2 )2 = (5x)2 + (3y)2 + (2)2 - 2(5x)(3y) + 2(3y)(2) - 2(2)(5x)
= 25x2 + 9y2 + 4 - 30xy + 12y - 20x
Question 3.5Expand :
=
=
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
Sol:We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .......(1)
Given that, a2 + b2 + c2 = 50 and a + b + c = 12.
We need to find ab + bc + ca :
Substitute the values of (a2 + b2 + c2 ) and ( a + b + c )
in the identity (1), we have
(12)2 = 50 + 2( ab + bc + ca )
⇒ 144 = 50 + 2( ab + bc + ca )
⇒ 94 = 2( ab + bc + ca)
⇒ ab + bc + ca =
⇒ ab + bc + ca = 47
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
Sol:We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) ....(1)
Given that, a2 + b2 + c2 = 35 and ab + bc + ca = 23
We need to find a + b + c :
Substitute the values of ( a2 + b2 + c2 ) and ( ab + bc + ca )
in the identity (1), we have
( a + b + c )2 = 35 + 2(23)
⇒ ( a + b + c )2 = 81
⇒ a + b + c =
⇒ a + b + c =
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
Sol:We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .....(1)
Given that, a + b + c = p and ab + bc + ca = q
We need to find a2 + b2 + c2 :
Substitute the values of ( ab + bc + ca ) and ( a + b + c )
in the identity (1), we have
(p)2 = a2 + b2 + c2 + 2q
⇒ p2 = a2 + b2 + c2 + 2q
⇒ a2 + b2 + c2 = p2 - 2q
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
Sol:a2 + b2 + c2 = 50 and ab + bc + ca = 47
Since ( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )
∴ ( a + b + c )2 = 50 + 2(47)
⇒ ( a + b + c )2 = 50 + 94 = 144
⇒ a + b +c =
∴ a + b + c =
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
Sol:x + y - z = 4 and x2 + y2 + z2 = 30
Since ( x + y - z)2 = x2 + y2 + z2 + 2( xy - yz - zx ), we have
(4)2 = 30 + 2( xy - yz - zx )
⇒ 16 = 30 + 2( xy - yz - zx )
⇒ 2( xy - yz - zx ) = -14
⇒ xy - yz - zx =
∴ xy - yz - zx = -7
No comments:
Post a Comment