Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Taking (2x - 5y) common from both terms
= (2x - 5y)[2(3x + 4y) - 6(x - y)]
= (2x - 5y)(6x + 8y - 6x + 6y)
= (2x - 5y)(8y + 6y)
= (2x - 5y)(14y)
= (2x - 5y)14y
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
= xy(3x2 - 2y2) + yz(3x2 - 2y2) + zx(15x2 - 10y2)
= xy(3x2 - 2y2) + yz(3x2 - 2y2) + 5zx(3x2 - 2y2)
= (3x2 - 2y2)[xy + yz + 5zx]
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
= ab(a2 + b2 - c2) + bc(a2 + b2 - c2) + ca(a2 + b2 - c2)
= (a2 + b2 - c2)[ab + bc + ca]
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
= 2x(a - b) + 15y(a - b) - 8z(a - b)
= (a - b)[2x + 15y - 8z]
Factorise by the grouping method : a3 + a - 3a2 - 3
Sol:a3 + a - 3a2 - 3
= a (a2 + 1) - 3(a2 + 1)
= (a2 + 1) (a -3).
Factorise by the grouping method: 16 (a + b)2 - 4a - 4b
Sol:16 (a + b)2 - 4a - 4b =16 (a + b)2 - 4 (a + b)
= 4 (a + b) [4 (a + b) - 1]
= 4 (a + b) (4a + 4b - 1)
Factorise by the grouping method : a4 - 2a3 - 4a + 8
Sol:a4 - 2a3 - 4a + 8 = a3( a - 2 ) - 4( a - 2 )
= ( a3 - 4 )( a - 2 )
Factorise by the grouping method : ab - 2b + a2 - 2a
Sol:ab - 2b + a2 - 2a = b( a - 2 ) + a( a - 2 )
= ( a + b )( a - 2 )
Factorise by the grouping method : ab (x2 + 1) + x (a2 + b2)
Sol:ab (x2 + 1) + x (a2 + b2)
= abx2 + ab + a2x + b2x
= abx2 + b2 + a2x + ab
= bx( ax + b) + a( ax + b )
= ( ax + b )( bx + a ).
Factorise by the grouping method : a2 + b - ab - a
Sol:a2 + b - ab - a = a2 - a + b - ab
= a( a - 1) + b( 1 - a )
= a(a - 1) - b(a - 1)
= (a -1)(a - b)
Factorise by the grouping method : (ax + by)2 + (bx - ay)2
Sol:(ax + by)2 + (bx - ay)2
= a2x2 + b2y2 + 2axby + b2x2 + a2y2 - 2bxay
= a2x2 + b2y2 + b2x2 + a2y2
= x2( a2 + b2 ) + y2( a2 + b2 )
= ( x2 + y2 )( a2 + b2 )
Factorise by the grouping method : a2x2 + (ax2 + 1) x + a
Sol;a2x2 + (ax2 + 1) x + a
= a2x2 + a + (ax2 + 1) x
= a( ax2 + 1) + x( ax2 + 1)
= ( a + x )( ax2 + 1 )
Factorise by the grouping method : (2a-b)2 -10a + 5b
Sol:( 2a - b)2 - 10a + 5b
= ( 2a - b )2 - 5( 2a - b )
= ( 2a - b )( 2a - b - 5 )
Factorise by the grouping method : a (a -4) - a + 4
Sol:a (a -4) - a + 4
= a( a - 4 ) -1( a - 4 )
= ( a - 4 )( a - 1 )
Factorise by the grouping method : y2 - (a + b) y + ab
Sol: y2 - (a + b) y + ab
= y2 - ay - by + ab
= y( y - a ) - b( y - a )
= ( y - a )( y - b )
Factorise by the grouping method :
=
=
=
Factorise using the grouping method:
x2 + y2 + x + y + 2xy
x2 + y2 + x + y + 2xy
= ( x2 + y2 + 2xy ) + ( x + y ) [As (x + y)2 = x2 + 2xy + y2]
= ( x + y )2 + ( x + y )
= ( x + y )( x + y + 1 )
Factorise using the grouping method :
a2 + 4b2 - 3a + 6b - 4ab
a2 + 4b2 - 3a + 6b - 4ab
= a2 + 4b2 - 4ab - 3a + 6b
= a2 + (2b)2 - 2 × a × (2b) - 3(a - 2b) [As (a - b)2 = a2 - 2ab + b2 ]
= (a - 2b)2 - 3(a - 2b)
= (a - 2b)[(a - 2b)- 3]
= (a - 2b)(a - 2b - 3)
Factorise using the grouping method :
m (x - 3y)2 + n (3y - x) + 5x - 15y
m (x - 3y)2 + n (3y - x) + 5x - 15y
= m (x - 3y)2 - n (x - 3y) + 5(x - 3y)
[Taking (x - 3y) common from all the three terms]
= (x - 3y) [m(x - 3y) - n + 5]
= (x - 3y)(mx - 3my - n + 5)
Factorise using the grouping method :
x (6x - 5y) - 4 (6x - 5y)2
x (6x - 5y) - 4 (6x - 5y)2
= (6x - 5y)[x - 4(6x - 5y)]
[Taking (6x - 5y) common from the three terms]
= (6x - 5y)(x - 24x + 20y)
= (6x - 5y)(-23x + 20y)
= (6x - 5y)(20y - 23x)
No comments:
Post a Comment