Factorise : a2 + 10a + 24
Sol:a2 + 10a + 24
= a2 + 6a + 4a + 24
= a( a + 6 ) + 4( a + 6 )
= ( a + 6 )( a + 4 )
Factorise : a2 - 3a - 40
Sol:a2 - 3a - 40
= a2 - 8a + 5a - 40
= a( a - 8 ) + 5( a - 8 )
= ( a - 8 )( a + 5 )
Factorise : 1 - 2a - 3a2
Sol:1 - 2a - 3a2
= 1 - 3a + a - 3a2
=( 1 + a )( 1 - 3a )
Factorise : x2 - 3ax - 88a2
Sol:x2 - 3ax - 88a2
= x2 - 11ax + 8ax - 88a2
= x( x - 11a ) + 8a( x - 11a )
= ( x + 8a )( x - 11a )
Factorise : 6a2 - a - 15
Sol:6a2 - a - 15
= 6a2 - 10a + 9a - 15
= 2a( 3a - 5 ) + 3( 3a - 5 )
= ( 2a + 3 )( 3a - 5 )
Factorise : 24a3 + 37a2 - 5a
Sol:24a3 + 37a2 - 5a
= a( 24a2 + 37a - 5 )
= a( 24a2 + 40a -3a - 5 )
= a x [ 8a( 3a + 5 ) - 1( 3a + 5 )]
= a[( 8a - 1 )( 3a + 5 )]
= a( 8a - 1 )( 3a + 5 )
Factorise : a(3a - 2) - 1
Sol:a(3a - 2) - 1
= 3a2 - 2a - 1
= 3a2 - 3a + a - 1
= 3a( a - 1 ) + 1( a - 1 )
= ( 3a + 1 )( a - 1 )
Factorise : a2b2 + 8ab - 9
Sol: a2b2 + 8ab - 9
= a2b2 + 9ab - ab - 9
= ab( ab + 9 ) -1( ab + 9 )
= ( ab + 9 )( ab - 1 )
Factorise : 3 - a (4 + 7a)
Sol:3 - a (4 + 7a)
= 3 - 4a - 7a2
= 3 - 7a + 3a - 7a2
= 1( 3 - 7a ) + a( 3 - 7a )
= ( 3 - 7a )( a + 1 )
Factorise : (2a + b)2 - 6a - 3b - 4
Sol:(2a + b)2 - 6a - 3b - 4
= ( 2a + b )2 - 3( 2a + b ) - 4
Assume that, 2a + b = x
Therefore,
(2a + b)2 - 6a - 3b - 4
= x2 - 3x - 4
= x2 - 4x + x - 4
= 1( x - 4 ) + x( x - 4 )
= ( x + 1 )( x - 4 )
= ( 2a + b + 1 )( 2a + b - 4 )
[ resubstitute the value of x ]
Factorise : 1 - 2 (a+ b) - 3 (a + b)2
Sol:1 - 2 (a+ b) - 3 (a + b)2
Assume that a + b = x ;
1 - 2( a + b ) - 3( a + b )2
= 1 - 2x - 3x2
= 1 - 3x + x - 3x2
= 1( 1 - 3x ) + x( 1 - 3x )
= ( 1 - 3x )( 1 + x )
= [ 1 - 3( a + b )][ 1 + ( a + b )]
= ( 1 - 3a - 3b )( 1 + a + b )
Factorise : 3a2 - 1 - 2a
Sol:3a2 - 1 - 2a
= 3a2 - 2a - 1
= 3a2 - 3a + a - 1
= 3a( a - 1 ) + 1( a - 1 )
= ( 3a + 1 )( a - 1 )
Factorise : x2 + 3x + 2 + ax + 2a
Sol:x2 + 3x + 2 + ax + 2a
= x2 + 2x + x + 2 + ax + 2a
= x( x + 2 )+1( x + 2 ) +a( x + 2 )
= ( x + 2 )( x + a + 1 )
Factorise : (3x - 2y)2 + 3 (3x - 2y) - 10
Sol:(3x - 2y)2 + 3 (3x - 2y) - 10
Assume that 3x - 2y = a
Therefore,
(3x - 2y)2 + 3 (3x - 2y) - 10
= a2 + 3a - 10
= a2 + 5a - 2a -10
= a( a + 5 ) -2 ( a + 5 )
= ( a + 5 )( a - 2 )
= ( 3x - 2y + 5 )( 3x - 2y - 2)
Factorise : 5 - (3a2 - 2a) (6 - 3a2 + 2a)
Sol:5 - (3a2 - 2a) (6 - 3a2 + 2a)
= 5 - ( 3a2 - 2a )[ 6 - ( 3a2 - 2a )]
Assume that 3a2 - 2a = x
Therefore,
5 - ( 3a2 - 2a )( 6 - 3a2 + 2a )
= 5 - x( 6 - x )
= 5 - 6x + x2
= 5( 1 - x ) - x( 1 - x )
= ( 5 - x )( 1 - x )
= ( x - 5 )( x - 1 )
= ( 3a2 - 2a - 5 )( 3a2 - 2a - 1 )
= ( 3a2 - 5a + 3a -5 )(3a2 - 3a + a - 1 )
= [ a( 3a - 5 ) + 1( 3a - 5)][3a( a - 1) + 1( a - 1)]
= ( 3a - 5 )( a + 1 )( 3a + 1 )( a - 1 )
Factorise :
=
=
=
=
=
=
=
=
=
Factories: (x2 - 3x)(x2 - 3x - 1) - 20.
Sol:(x2 - 3x)(x2 - 3x - 1) - 20
= (x2 - 3x)[(x2 - 3x) - 1] - 20
= a[a - 1] - 20 ….( Taking x2 - 3x = a )
= a2 - a - 20
= a2 - 5a + 4a - 20
= a(a - 5) + 4(a - 5)
= (a - 5)(a + 4)
= (x2 - 3x - 5)(x2 - 3x + 4)
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
x2 - 3x - 54
Given expression : x2 - 3x - 54
Comparing with ax2 + bx + c, we get a = 1, b = -3, and c = - 54
∴ b2 - 4ac = (-3)2 - 4(1)(-54) = 9 + 216 = 225, which is a perfect square.
∴ x2 - 3x - 54 is factorisable.
Now, x2 - 3x - 54 = x2 - 9x + 6x - 54
= x( x - 9 ) + 6( x - 9 )
= ( x - 9 )( x + 6 )
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
2x2 - 7x - 15
Given expression : 2x2 - 7x - 15
Comparing with ax2 + bx + c, we get a = 2, b = -7, and c = -15
∴ b2 - 4ac = (-7)2 - 4(2)(-15) = 49 + 120 = 169, which is a perfect square.
∴ 2x2 - 7x - 15 is factorisable.
Now, 2x2 - 7x - 15
= 2x2 - 10x + 3x - 15
= 2x( x - 5 ) + 3( x - 5 )
= ( 2x + 3 )( x - 5 )
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
2x2 + 2x - 75
Given expression : 2x2 + 2x - 75
Comparing with ax2 + bx + c, we get a = 2, b = 2, and c = - 75
∴ b2 - 4ac = (2)2 - 4(2)(-75) = 4 + 600 = 604, which is not a perfect square.
∴ 2x2 + 2x - 75 is not factorisable.
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
3x2 + 4x - 10
Given expression : 3x2 + 4x - 10
Comparing with ax2 + bx + c, we get a = 3, b = 4, and c = -10
∴ b2 - 4ac = (4)2 - 4(3)(-10) = 16 + 120 = 136, which is not a perfect square.
∴ 3x2 + 4x - 10 is not factorisable.
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
x(2x - 1) - 1
Given expression : x(2x - 1) - 1
Now , x(2x - 1) - 1 = 2x2 - x - 1
Comparing with ax2 + bx + c, we get a = 2, b = - 1, and c = - 1
∴ b2 - 4ac = (- 1)2 - 4(2)(-1) = 1 + 8 = 9, which is a perfect square.
∴ 2x2 - x - 1 is factorisable.
Now, 2x2 - x - 1 = 2x2 - 2x + x - 1
= 2x( x - 1 ) + 1( x - 1 )
= ( 2x + 1 )( x - 1 )
Factorise : 4√3x2 + 5x - 2√3
Sol:4√3x2 + 5x - 2√3
= 4√3x2 + 8x - 3x - 2√3
= 4x( √3x + 2 ) - √3( √3x + 2 )
= ( √3x + 2 )( 4x - √3 )
Factorise : 7√2x2 - 10x - 4√2
Sol:7√2x2 - 10x - 4√2
= 7√2x2 - 14x + 4x - 4√2
= 7√2x( x - √2 ) + 4( x - √2 )
= ( x - √2 )( 7√2x + 4 )
Give possible expressions for the length and the breadth of the rectangle whose area is 12x2 - 35x + 25
Sol:12x2 - 35x + 25
= 12x2 - 20x - 15x + 25
= 4x(3x - 5) - 5(3x - 5)
= (3x - 5)(4x - 5)
Thus,
Length = (3x - 5) and breadth = (4x - 5)
OR
Length = (4x - 5) and breadth = (3x - 5)
No comments:
Post a Comment