SELINA Solution Class 9 Factorisation Chapter 5 Exercise 5E

Question 1

Factorise : x2+1(4x)2+1-7x-72x

Sol:

x2+1(4x)2+1-7x-72x

= (x)2+1(2x)2+2×x×12x-7(x+12x)

= (x+12x)2-7(x+12x)

= (x+12x)(x+12x-7)

= (x+12x)(x-7+12x)

Question 2

Factorise : (9a)2+1(9a)2-2-12a+43a

Sol:

(9a)2+1(9a)2-2-12a+43a

= (3a)2+1(3a)2-2×3a×13a-4(3a-13a)

= (3a-13a)2-4(3a-13a)

= (3a-13a)[(3a-13a)-4]

= (3a-13a)(3a-4-13a)

Question 3

Factorise : x2+a2+1ax+1

Sol:

x2+a2+1ax+1=0

x2+ax+1ax+1=0

x(x+a)+1a(x+a)=0

(x+a)(x+1a)=0

Question 4

Factorise : x4+y4-27x2y2

Sol:

x4+y4-27x2y2

= (x2)2+(y2)2-2x2y2-25x2y2

= (x2-y2)2-25x2y2

= (x2-y2)2-(5xy)2      [∵ a2 - b2 = ( a + b )( a - b )]

= [(x2-y2)+5xy][(x2-y2)-5xy]

= [x2+5xy-y2][x2-5xy-y2]

Quesiton 5

Factorise : 4x4 + 9y4 + 11x2y2

Sol:

4x4 + 9y4 + 11x2y2

= (2x2)2 + (3y2)2 + 12x2y2 - x2y2

= (2x2 + 3y2)2 - x2y2

= (2x2 + 3y2)2 - (xy)2

= ( 2x2 + 3y2 - xy )( 2x2 + 3y2 + xy)          [ ∵ a2 - b2 = ( a + b )( a - b )]

Quesiton 6

Factorise : x2+1x2-3

Sol:

x2+1x2-3

= x2+1x2-2×x×1x-1

= (x-1x)2-1

= (x-1x)2-(1)2

= (x-1x-1)(x-1x+1)   [ ∵ a2 - b2 = ( a + b )( a - b )]

Question 7

Factorise : a - b - 4a2 + 4b2

Sol:

a - b - 4a2 + 4b 
= ( a - b ) - 4( a2 - b2 )

= ( a - b ) - 4( a - b )( a + b )   [ ∵ a2 - b2 = ( a + b )( a - b )]

= ( a - b )[ 1 - 4( a + b )]

= ( a - b )[ 1 - 4a - 4b ]

Question 8

Factorise : (2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2

Sol:

(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2

= [( 2a - 3 ) - ( a - 1 )]2

= [ 2a - 3 - a + 1 ]2

= ( a - 2 )2

Question 9

Factorise : (a2 - 3a) (a2 - 3a + 7) + 10

Sol:

(a2 - 3a) (a2 - 3a + 7) + 10

Let us assume , a2 - 3a = x
Then, our polynomial becomes,
( a2 - 3a )( a2 - 3a + 7 ) + 10
= x( x + 7 ) + 10
= x2 + 7x + 10
= x2 + 5x + 2x + 10
= x( x + 5 ) + 2 ( x + 5 )
= ( x + 5 )( x + 2 )

By resubstituting the value of x,
= (a2 - 3a + 5)( a2 - 3a + 2 )

Now, a2 - 3a + 5 will have no factor as discriminant is -11 that is less than 0.

And,

∴ a2 - 3a + 2 = a2 - 2a - a + 2 = a( a - 2) - 1(a - 2) = (a - 1)(a - 2)

So, factor of given polynomial are,

a2 - 3a + 2 = a2 - 2a - a + 2

= (a2 - 3a + 5)(a - 1)(a - 2)

Question 10

Factorise : (a2 - a) (4a2 - 4a - 5) - 6

Sol:

Let us assume, a2 - a = x
Then the given expression is,
(a2 - a) (4a2 - 4a - 5) - 6
= x( 4x - 5 ) - 6
= 4x2 - 5x - 6
= 4x2 - 8x + 3x - 6
= 4x( x - 2 ) + 3( x - 2 )
= ( 4x + 3 )( x - 2 )
= [ 4( a2 - a ) + 3 ]( a2 - a - 2 )          [ resubstitute the value of x ]
= [ 4a2 - 4a + 3 ]( a2 - a - 2 )
= [ 4a2 - 4a + 3 ]( a2 - 2a + a - 2 )
= [ 4a2 - 4a + 3 ][ a( a - 2 ) + 1( a - 2 )]
= [ 4a2 - 4a + 3 ]( a - 2 )( a + 1 )

Question 11

Factorise : x4 + y4 - 3x2y2

Sol:

x4 + y4 - 3x2y
= x4 + y4 - 2x2y2 - x2y2

= (x2)2 + (y2)2 - 2x2y2 - x2y2

= ( x2 - y2 )2 - (xy)2

= ( x2 - y2 - xy )( x2 - y2 + xy )         [ ∵ a2 - b2 = ( a + b )( a - b )]

Question 12

Factorise : 5a2 - b2 - 4ab + 7a - 7b

Sol:

5a2 - b2 - 4ab + 7a - 7b
= 4a2 + a2 - b2 - 4ab + 7a - 7b
= a2 - b2 + 4a2 - 4ab + 7a - 7b
= ( a2 - b2 ) + 4a( a - b ) + 7( a - b )
= ( a - b )( a + b ) + 4a( a - b ) + 7( a - b )     [ ∵ a2 - b2 = ( a + b )( a - b ) ]
= ( a - b )[ ( a + b ) + 4a + 7 ]
= ( a - b )[ ( a + b ) + 4a + 7 ]
= ( a - b )[ 5a + b + 7 ]

Question 13

Factorise : 12(3x - 2y)2 - 3x + 2y - 1

Sol:

12(3x - 2y)2 - 3x + 2y - 1 = 12( 3x - 2y )2 - ( 3x - 2y ) - 1
Let us assume that 3x - 2y = a
Then the given expression is
12(3x - 2y)2 - 3x + 2y - 1
= 12a2 - 3a - 1
= 12a2 - 4a + 3a - 1
= 4a( 3a - 1 ) + 1( 3a - 1 )
= ( 4a + 1 )( 3a - 1 )
= [ 4( 3x - 2y ) + 1 ][ 3( 3x - 2y ) - 1 ]    [ resubstitute the value of a ]
= ( 12x - 8y + 1 )( 9x - 6y - 1)

Question 14

Factorise : 4(2x - 3y)2 - 8x+12y - 3

Sol:

 4(2x - 3y)2 - 8x+12y - 3
=  4(2x - 3y)- 4(2x - 3y) - 3
Let us assume that 2x - 3y = a
Then the given expression is
 4(2x - 3y)2 - 8x+12y - 3 
= 4a2 - 4a - 3
= 4a2 - 6a + 2a - 3 
= 2a( 2a - 3 ) + 1( 2a - 3)
= ( 2a - 3 )( 2a + 1 )
= [ 2( 2x - 3y ) - 3 ][ 2( 2x - 3y ) + 1 ]
= ( 4x - 6y - 3 )( 4x - 6y + 1 )

Question 15

Factorise : 3 - 5x + 5y - 12(x - y)2

Sol:

3 - 5x + 5y - 12(x - y)= 3 - 5( x - y ) - 12(x - y)
Let us assume that x - y = a
Then the given expression is
3 - 5x + 5y - 12(x - y)
= 3 - 5a - 12a2
= 3 - 9a + 4a - 12a2
= 3( 1 - 3a ) + 4a( 1 - 3a )
= ( 3 + 4a )( 1 - 3a )                 [ resubstitute the value of a ]
= [ 3 + 4( x - y )][ 1 - 3( x - y )]
= ( 3 + 4x - 4y )( 1 - 3x +  3y )

Question 16

Factorise : 9x 2 + 3x - 8y - 64y2

Sol:

9x 2 + 3x - 8y - 64y
= 9x2 - 64y2 + 3x - 8y
= [ (3x)2 - (8y)2 ] + ( 3x - 8y )
= [( 3x + 8y )( 3x - 8y )] + ( 3x - 8y )
= ( 3x - 8y )( 3x + 8y + 1 )

Question 17

Factorise : 2√3x2 + x - 5√3

Sol:

 2√3x2 + x - 5√3

= 2√3x+ 6x - 5x - 5√3

= 2√3x( x + √3 ) - 5( x + √3 )

= ( 2√3x - 5 )( x + √3 )

Question 18

Factorise : 14(a+b)2-916(2a-b)2 

Sol:

14(a+b)2-916(2a-b)2 

=14[(a+b)2-94(2a-b)2]

=14[(a+b)2-[32(2a-b)2]]

=14[(a+b+32(2a-b))(a+b-32(2a-b))]

=14[(a+b+3a-3b2)(a+b-3a+3b2)]

= 14[(4a-b2)(5b2-2a)]

= 14[(8a-b2)(5b-4a2)]

= 14[14(8a-b)(5b-4a)]

= 116(8a-b)(5b-4a)

Question 19

Factorise : 2(ab + cd) - a2 - b2 + c2 + d2

Sol:

2(ab + cd) - a2 - b2 + c2 + d
= 2ab + 2cd - a2 - b2 + c2 + d2 
= c+ d2 + 2cd - a2 - b2 + 2ab
= ( c2 + d2 + 2cd ) - ( a2 + b2 - 2ab )
= ( c + d )2 - ( a - b )2
= ( c + d + a - b )( c + d - a + b )

Question 20.1

Find the value of : ( 987 )2 - (13)2

Sol:

( 987 )2 - (13)
= ( 987 + 13 )( 987 - 13)
= 1000 x 974
= 974000

Question 20.2

Find the value of : ( 67.8 )2 - ( 32.2 )2

Sol:

( 67.8 )2 - ( 32.2 )2 
= ( 67.8 + 32.2 )( 67.8 - 32.2 )
= 100 x 35.6
= 3560

Question 20.3

Find the value of : (6.7)2-(3.3)26.7-3.3

Sol:

(6.7)2-(3.3)26.7-3.3

= (6.7+3.3)(6.7-3.3)(6.7-3.3)

= 10

Question 20.4

Find the value of : (18.5)2-(6.5)218.5+6.5

Sol:

(18.5)2-(6.5)218.5+6.5

= (18.5+6.5)(18.5-6.5)(18.5+6.5)

= 12

No comments:

Post a Comment

Contact form

Name

Email *

Message *