Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4
8x + 5y = 9 ...(1)
3x + 2y = 4 ...(2)
8x + 5y = 9
∴ 5y = 9 - 8x
∴ y =
Putting this value of y in (2)
Multiplying by 5,
15x + 18 - 16x = 20
15x - 16x = 20 - 18
- x = 2
x = - 2
From (3) y =
y = 5
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9
2x - 3y = 7 ...(1)
5x + y = 9 ...(2)
5x + y = 9
∴ y = 9 - 5x ...(3)
Putting this value of y in (1)
2x - 3 (9 - 5x) = 7
∴ 2x - 27 + 15x = 7
∴ 2x + 15x = 7 + 27
∴ 17x = 34
∴ x = 2
From (2)
y = 9 - 5(2)
y = -1
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y
2x + 3y = 8 ...(1)
2x = 2 + 3y ...(2)
2x = 2 + 3y
Putting this value of 2x in (1)
2 + 3y + 3y = 8
∴ 6y = 8 - 2
∴ 6y = 6
∴ y = 1
From (2) 2x = 2 + 3(1)
x =
x = 2.5
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
0.2x + 0.1y = 25
2(x - 2) - 1.6y = 116
The given pair of linear equations are
0.2x + 0.1y = 25 ....(1)
2( x - 2 ) - 1.6y = 116 .....(2)
Consider equation (1)
0.2x + 0.1y = 25
⇒ 0.2x = 25 - 0.1y
⇒ x =
Substitute the value of x from equation (3) in equation (2).
2( x - 2 ) - 1.6y = 116
⇒
⇒
⇒
⇒
⇒
⇒ y = 50 ....(4)
Substitute the value of y from equation (4) in equation (3).
x =
⇒ x =
⇒ x =
⇒ x = 100
∴ Solution is x = 100 and y = 50.
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8
6x = 7y + 7 ...(1)
7y - x = 8 ...(2)
7y - x = 8
∴ x = 7y - 8
Putting this value of x in (1)
6( 7y - 8 ) = 7y + 7
∴ 42y - 48 = 7y + 7
∴ 35y = 55
∴ y =
From (2)
x = 3
∴ x = 3, y =
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25
y = 4x - 7 ....(1)
16x - 5y = 25 ....(2)
y = 4x - 7
Putting this value of y in (2)
∴ 16x - 5 (4x - 7) = 25
∴ 16x - 20x + 35 = 25
∴ - 4x = - 10
∴ x =
From (1)
y =
⇒ y = 10 - 7
⇒ y = 3
Solution is x =
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 7y = 39
3x + 5y = 31
2x + 7y = 39 ...(1)
3x + 5y = 31 ...(2)
2x + 7y = 39
∴ x =
Putting this value of x in (2)
From (1) x =
x =
x = 2
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
1.5x + 0.1y = 6.2
3x - 0.4y = 11.2
The given pair of linear equations are
1.5x + 0.1y = 6.2 ...(1)
3x - 0.4y = 11.2 ...(2)
Consider equation (1)
1.5x + 0.1y = 6.2
⇒ 1.5x = 6.2 - 0.1y
⇒ x =
Substitute the value of x from equation (3) in equation (2)
3x - 0.4y = 11.2
⇒
⇒
⇒
⇒
⇒ y = 2 .....(4)
Substitute the value of y from equation (4) in equation (3)
x =
⇒ x =
⇒ x =
⇒ x = 4
∴ Solution is x = 4 and y = 2.
Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0
Given equations are
2( x - 3 ) + 3( y - 5 ) = 0 ...(1)
5( x - 1 ) + 4( y - 4 ) = 0 ...(2)
From (1), we get
2x - 6 + 3y - 15 = 0
⇒ 2x - 21 + 3y = 0
⇒ 2x = 21 - 3y
⇒ x =
From (2), we get
5( x - 1 ) + 4( y - 4 ) = 0
⇒ 5x - 5 + 4y - 16 = 0
⇒ 5x + 4y - 21 = 0 ....(3)
Substituting x =
⇒
⇒ 105 - 15y + 8y - 42 = 0
⇒ -7y + 63 = 0
⇒ 7y = 63
⇒ y = 9
Substituting y = 9 in x =
x =
∴ Solution is x = -3 and y = 9.
Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
⇒
⇒ 6x + 3 + 35y - 21 = 252
⇒ 6x + 35y - 18 = 252
⇒ 6x + 35y = 270
⇒ 6x = 270 - 35y
⇒ x =
⇒
⇒ 27x + 18 - 8y - 6 = 234
⇒ 27x - 8y + 12 = 234
⇒ 27x - 8y = 222 ....(1)
Substituting x =
⇒ 7290 - 945y - 48y = 1332
⇒ - 993y = - 5958
⇒ y = 6
Substituting y = 6 in x =
x =
∴ Solution is x = 10 and y = 6.
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0
3x + 2y = 11
⇒ 3x = 11 - 2y
⇒ x =
And,
2x - 3y + 10 = 0
⇒ 2x
⇒
⇒
⇒ 22 - 13y = - 30
⇒ 13y = 52
⇒ y = 4
Substituting the value of y in (1), we have
∴ Solution is x = 1 and y = 4.
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0
2x - 3y + 6 = 0
⇒ 2x = 3y - 6
⇒ x =
And,
2x + 3y - 18 = 0
⇒ 2
⇒ 3y - 6 + 3y = 18
⇒ 6y = 24
⇒ y = 4
Substituting the value of y in (1), we have
x =
∴ Solution is x = 3 and y = 4.
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
⇒
⇒ 2x + 3y = 13
⇒ 2x = 13 - 3y
⇒
And,
⇒
⇒
⇒
⇒
⇒ 117 - 47y = - 24
⇒ 47y = 141
⇒ y = 3
Substituting the value of y in (1), we have
∴ Solution is x = 2 and y = 3.
Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
⇒
⇒ 5x + 2y = 120
⇒ 5x = 120 - 2y
⇒ x =
And,
⇒
⇒
⇒
⇒
⇒ 480 - 13y = 285
⇒ 13y = 195
⇒ y = 15
Substituting the value of y in (1), we have
∴ Solution is x = 18 and y = 15
No comments:
Post a Comment