SELINA Solution Class 9 Simultaneous (Linear) Equation (Including problems) Chapter 6 Exercise 6A

Question 1

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4

Sol:

8x + 5y = 9                                         ...(1)
3x + 2y = 4                                         ...(2)

8x + 5y = 9
∴ 5y = 9 - 8x
∴ y = 9-8x5                               ....(3)
Putting this value of y in (2)
3x+2[9-8x5]=4
Multiplying by 5,
15x + 18 - 16x = 20
15x - 16x = 20 - 18
- x = 2
x = - 2
From (3) y = 9-8x5=9-8(-2)5=255=5 

y = 5   

Question 2

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9

Sol:

2x - 3y = 7                                       ...(1)
5x + y = 9                                        ...(2)

5x + y = 9
∴ y = 9 - 5x                                     ...(3)
Putting this value of y in (1)
2x - 3 (9 - 5x) = 7
∴ 2x - 27 + 15x = 7
∴ 2x + 15x = 7 + 27
∴ 17x = 34
∴ x = 2
From (2)
y = 9 - 5(2) 
y = -1

Question 3

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y

Sol:

2x + 3y = 8                                       ...(1)
2x = 2 + 3y                                       ...(2)

2x = 2 + 3y
Putting this value of 2x in (1)
2 + 3y + 3y = 8
∴ 6y = 8 - 2
∴ 6y = 6
∴ y = 1

From (2) 2x = 2 + 3(1)
x = 52
x = 2.5

Question 4

Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
0.2x + 0.1y = 25
2(x - 2) - 1.6y = 116

Sol:

The given pair of linear equations are
0.2x + 0.1y = 25                        ....(1)
2( x - 2 ) - 1.6y = 116                .....(2)

Consider equation (1)
0.2x + 0.1y = 25
⇒ 0.2x = 25 - 0.1y
⇒ x = 25-0.1y0.2              ....(3) 

Substitute the value of x from equation (3) in equation (2).
2( x - 2 ) - 1.6y = 116
2[25-0.1y0.2-2]- 1.6y = 116

2×25-0.140.2-2×2-1.6y=116

0.2×50-0.240.2-4-1.6y=116

50-0.2y-0.8-0.32y=23.2

26=0.52y

⇒ y = 50                                      ....(4)

Substitute the value of y from equation (4) in equation (3).
x = 25-0.1y0.2

⇒ x = 25- 0.1(50)0.2

⇒ x = 25-50.2

⇒ x = 100
∴ Solution is x = 100 and y = 50.

Question 5

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8

Sol:

6x = 7y + 7                                  ...(1)
7y - x = 8                                     ...(2)

7y - x = 8
∴ x = 7y - 8

Putting this value of x in (1)
6( 7y - 8 ) = 7y + 7
∴ 42y - 48 = 7y + 7
∴ 35y = 55
∴ y = 117

From (2) 
x=7(117)-8
x = 3

∴ x = 3, y = 117.

Question 6

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25

Sol:

y = 4x - 7                                      ....(1)
16x - 5y = 25                                ....(2)

y = 4x - 7
Putting this value of y in (2)
∴ 16x - 5 (4x - 7) = 25
∴ 16x - 20x + 35 = 25
∴ - 4x = - 10
∴ x = 52

From (1)
y = 4(52)-7
⇒ y = 10 - 7
⇒ y = 3
Solution is x = 52 and y = 3.

Question 7

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 7y = 39
3x + 5y = 31

Sol:

2x + 7y = 39                           ...(1)
3x + 5y = 31                           ...(2)

2x + 7y = 39
∴ x = 39-7y2

Putting this value of x in (2)
3(39-7y2)+5y=31

117-21y+10y=62

-11y=-55

y=5

From (1) x = 39-7(5)2

x = 42
x = 2

Question 8

Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
1.5x + 0.1y = 6.2
3x - 0.4y = 11.2

Sol:

The given pair of linear equations are
1.5x + 0.1y = 6.2                  ...(1)
3x - 0.4y = 11.2                    ...(2)

Consider equation (1)
1.5x + 0.1y = 6.2
⇒ 1.5x = 6.2 - 0.1y

⇒ x = 6.2-0.1y1.5           ...(3)

Substitute the value of x from equation (3) in equation (2)
3x - 0.4y = 11.2

3[6.2-0.1y1.5]-0.4y=11.2

2(6.2-0.1y)-0.4y=11.2

12.4-0.2y-0.4=11.2

-0.6y=-1.2

⇒ y = 2                                  .....(4)

Substitute the value of y from equation (4) in equation (3)
x = 6.2-0.1y1.5

⇒ x = 6.2-0.1(2)1.5

⇒ x = (6.2-0.2)1.5

⇒ x = 4
∴ Solution is x = 4 and y = 2.

Question 9

Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0

Sol:

Given equations are
2( x - 3 ) + 3( y - 5 ) = 0                      ...(1)
5( x - 1 ) + 4( y - 4 ) = 0                      ...(2)

From (1), we get
2x - 6 + 3y - 15 = 0
⇒ 2x - 21 + 3y = 0
⇒ 2x = 21 - 3y

⇒ x = 21-3y2

From (2), we get
5( x - 1 ) + 4( y - 4 ) = 0
⇒ 5x - 5 + 4y - 16 = 0
⇒ 5x + 4y - 21 = 0                             ....(3)

Substituting x = 21-3y2 in (3), we get

5(21-3y2)+4y-21=0

105-3y2+4y-21=0

⇒ 105 - 15y + 8y - 42 = 0
⇒ -7y + 63 = 0
⇒ 7y = 63
⇒ y = 9

Substituting y = 9 in x = 21-3y2, we get

x = 21-3(9)2=21-272=-62=-3
∴ Solution is x = -3 and y = 9.

Question 10

Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2x+17+5y-33=12

3x+22-4y+39=13   

Sol:

2x+17+5y-33=12         (given)

3(2x+1)+7(5y-3)21 = 12

⇒ 6x + 3 + 35y - 21 = 252
⇒ 6x + 35y - 18 = 252
⇒ 6x + 35y = 270
⇒ 6x = 270 - 35y
⇒ x = 270-35y6

3x+22-4y+39=13          (given)

9(3x+2)-2(4y+3)18=13

⇒ 27x + 18 - 8y - 6 = 234
⇒ 27x - 8y + 12 = 234
⇒ 27x - 8y = 222                       ....(1)

Substituting x = 270-35y6 in (1), we get

27(270-35y6) - 8y = 222

⇒ 7290 - 945y - 48y = 1332
⇒ - 993y = - 5958
⇒ y = 6

Substituting y = 6 in x = 270-35y6, we get

x = 270-35×66=270-2106=606=10

∴ Solution is x = 10 and y = 6.

Question 11

Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0

Sol:

3x + 2y = 11
⇒ 3x = 11 - 2y
⇒ x = 11-2y3                          ...(1)
And,
2x - 3y + 10 = 0
⇒ 2x(11-2y3)-3y+10 = 0

22-4y3-3y = - 10

22-4y-9y3 = - 10

⇒ 22 - 13y = - 30
⇒ 13y = 52
⇒ y = 4

Substituting the value of y in (1), we have

x=11-2(4)3=11-83=33=1

∴ Solution is x = 1 and y = 4.

Qustion 12

Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0

Sol:

2x - 3y + 6 = 0
⇒ 2x = 3y - 6
⇒ x = 3y-62                     ...(1)
And,
2x + 3y - 18 = 0
⇒ 2(3y-62)+ 3y = 18          ...[From(1)]

⇒ 3y - 6 + 3y = 18
⇒ 6y = 24
⇒ y = 4
Substituting the value of y in (1), we have
x = 3×4-62=12-62=62=3
∴ Solution is x = 3 and y = 4.

Question 13

Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x2-5y3+2=0

x3+y2=216

Sol:

x3+y2=216

x3+y2=136

2x+3y6=136

⇒ 2x + 3y = 13
⇒ 2x = 13 - 3y
x=13-3y2                     ....(1)
And,

3x2-5y3+2=0

32(13-3y2)-5y3=-2

39-9y4-5y3=-2

117-27y-20y12=-2

117-47y12=-2

⇒ 117 - 47y = - 24
⇒ 47y = 141
⇒ y = 3
Substituting the value of y in (1), we have
x=13-3×32=13-92=42=2

∴ Solution is x = 2 and y = 3.

Question 14

Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
x6+y15=4

x3-y12=434 

Sol:

x6+y15=4     

5x+2y30=4

⇒ 5x + 2y = 120
⇒ 5x = 120 - 2y

⇒ x = 120-2y5                   ....(1)

And,
x3-y12=434

13(x-y4)=194

13(120-2y5-y4)=194

480-8y-5y20=574 

480-13y20=574

⇒ 480 - 13y = 285
⇒ 13y = 195
⇒ y = 15
Substituting the value of y in (1), we have

x=120-2×155=120-305=905=18
∴ Solution is x = 18 and y = 15

No comments:

Post a Comment

Contact form

Name

Email *

Message *