SELINA Solution Class 9 Simultaneous (Linear) Equation (Including problems) Chapter 6 Exercise 6C

Question 1

Solve, using cross-multiplication :
4x + 3y = 17
3x - 4y + 6 = 0

Sol:

Given equation are 4x + 3y = 17 and 3x - 4y + 6 = 0
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 4, b1 = 3, c1 = -17 and a2 = 3, b2 = - 4, c2 = 6

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 3×6-(-4)×(-17)4×(-4)-3×3 and y=-17×3-6×44×(-4)-3×3

⇒ x = 18-68-16-9 andy=-51-24-16-9

x=-50-25andy=-75-25

⇒ x = 2 and y = 3.

Question 2

Solve, using cross-multiplication :
3x + 4y = 11
2x + 3y = 8

Sol:

Given equations are 3x + 4y = 11 and 2x + 3y = 8
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, we have
a1 = 3, b1 = 4, c1 = -11 and a2 = 2, b2 = 3, c2 = - 8

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 4×(-8)-3×(-11)3×3-2×4 and y=-11×2-(-8)×33×3-2×4

x=-32+339-8andy=-22+249-8

⇒ x = 1 and y = 2

Question 3

Solve, using cross-multiplication :
6x + 7y - 11 = 0
5x + 2y = 13

Sol:

Given equation are 6x + 7y - 11 = 0 and 5x + 2y = 13
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 6, b1 = 7, c1 = -11 and a2 = 5, b2 = 2, c2 = -13

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 7×(-13)-2×(-11)6×2-5×7 and y=-11×5-(-13)×66×2-5×7

⇒ x = -91+2212-35 andy=-55+7812-35

⇒ x = -69-23 andy=23-23
⇒ x = 3 and y = -1

Question 4

Solve, using cross-multiplication :
5x + 4y + 14 = 0
3x = -10 - 4y

Sol:

Given equation are 5x + 4y + 14 = 0 and 3x = -10 - 4y
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have
a1 = 5, b1 = 4, c1 = 14 and a2 = 3, b2 =  4, c2 = 10

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 4×10-4×145×4-3×4 and y=14×3-10×55×4-3×4

⇒ x = 40-5620-12andy=42-5020-12

⇒ x = -168andy=-88

⇒ x = -2 and y = -1

Question 5

Solve, using cross-multiplication :
x - y + 2 = 0
7x + 9y = 130

Sol:

Given equation are x - y + 2 = 0 and 7x + 9y = 130
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 1, b1 = -1, c1 = 2 and a2 = 7, b2 = 9, c2 = -130

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = -1×(-130)-9×21×9-7×(-1) and y=2×7-(-130)×11×9-7×(-1)

⇒ x = 130-189+7  and y=14+1309+7

⇒ x = 11216  andy=14416

⇒ x = 7 and y = 9.

Question 6

Solve, using cross-multiplication :
4x - y = 5
5y - 4x = 7

Sol:

Given equation are 4x - y = 5 and 5y - 4x = 7
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 41, b1 = - 1, c1 = - 5 and a2 = - 4, b2 = 5, c2 = - 7

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = -1×(-7)-5×(-5)4×5-(-4)×(-1) and y=(-5)×(-4)-(-7)×44×5-(-4)×(-1)

x=7+2520-4 andy=20+2820-4 

⇒ x = 3216 andy=4816

⇒ x = 2 and y = 3

Quesiton 7

Solve, using cross-multiplication :
4x - 3y = 0
2x + 3y = 18

Sol:

Given equation are 4x - 3y = 0 and 2x + 3y = 18
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 4, b1 = - 3, c1 = 0 and a2 = 2, b2 = 3, c2 = -18

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = -3×(-18)-3×04×3-2×(-3) and y=0×2-(-18)×44×3-2×(-3)

x=54-012+6 andy=0+7212+6

⇒ x = 5418andy=7218

⇒ x = 3 and y = 4.

Question 8

Solve, using cross-multiplication :
8x + 5y = 9
3x + 2y = 4

Sol:

Given equation are 8x + 5y = 9 and 3x + 2y = 4
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 8, b1 = 5, c1 = -9 and a2 = 3, b2 = 2, c2 = - 4

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 5×(-4)-2×(-9)8×2-3×5 and y=-9×3-(-4)×88×2-3×5

⇒ x = -20+1816-15andy=-27+3216-15

⇒ x = -21andy=51
⇒ x = - 2 and y = 5.

Question 9

Solve, using cross-multiplication :
4x - 3y - 11 = 0
6x + 7y - 5 = 0

Sol:

Given equation are 4x - 3y - 11 = 0 and 6x + 7y - 5 = 0
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 4, b1 = - 3, c1 = -11 and a2 = 6, b2 = 7, c2 = - 5

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = -3×(-5)-7×(-11)4×7-6×(-3) and y=-11×6-(-5)×44×7-6×(-3)

⇒ x = 15+7728+18andy=-66+2028+18

⇒ x = 9246andy=-4646

⇒ x = 2 and y = - 1

Question 10

Solve, using cross-multiplication :
4x + 6y = 15
3x - 4y = 7

Sol:

Given equation are 4x + 6y = 15 and 3x - 4y = 7
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 4, b1 = 6, c1 = -15 and a2 = 3, b2 = - 4, c2 = -7

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = 6×(-7)-(-4)×(-15)4×(-4)-3×6 and y=-15×3-(-7)×44×(-4)-3×6

⇒ x = -42-60-16-18 andy=-45+28-16-18

⇒ x -102-34 andy=-17-34

⇒ x = 3 and y = 12

Question 11

Solve, using cross-multiplication :
0.4x - 1.5y = 6.5
0.3x + 0.2y = 0.9

Sol:

Given equation are 0.4x - 1.5y = 6.5 and 0.3x + 0.2y = 0.9
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = 0.4, b1 = -1.5, c1 = -6.5 and a2 = 0.3, b2 = 0.2, c2 = 0.9

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = (-1.5)×(-0.9)-(0.2)×(-6.5)0.4×(0.2)-(0.3)×(-1.5) and y=(-6.5)×(0.3)-(-0.9)×(0.4)0.4×(0.2)-(0.3)×(-1.5)

⇒ x = 1.35+1.30.08+0.45 andy=-1.95+0.360.08+0.45

⇒ x = 2.650.53andy=-1.590.53

⇒ x = 5 and y = - 3

Question 12

Solve, using cross-multiplication :
√2x - √3y = 0
√5x + √2y = 0

Sol;

Given equation are √2x - √3y = 0 and √5x + √2y = 0
Comparing with a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, We have

a1 = √2, b1 = √3, c1 = 0 and a2 = √5, b2 = √2, c2 = 0

Now, x = b1c2-b2c1a1b2-a2b1 and y=c1a2-c2a1a1b2-a2b1 

⇒ x = (-3)×0-2×02×2-5×(-3) and y=0×5-0×22×2-5×(-3)

⇒ x = 02+15andy=02+15

⇒ x = 0 and y = 0.

No comments:

Post a Comment

Contact form

Name

Email *

Message *